3,836 research outputs found

    Behavioural compensation by drivers of a simulator when using a vision enhancement system

    Get PDF
    Technological progress is suggesting dramatic changes to the tasks of the driver, with the general aim of making driving environment safer. Before any of these technologies are implemented, empirical research is required to establish if these devices do, in fact, bring about the anticipated improvements. Initially, at least, simulated driving environments offer a means of conducting this research. The study reported here concentrates on the application of a vision enhancement (VE) system within the risk homeostasis paradigm. It was anticipated, in line with risk homeostasis theory, that drivers would compensate for the reduction in risk by increasing speed. The results support the hypothesis although, after a simulated failure of the VE system, drivers did reduce their speed due to reduced confidence in the reliability of the system

    The JeffCare preceptor model for asthma: A primary care physician tutorial training model

    Get PDF
    The societal and economic impact of asthma is a well-documented phenomenon in this country. Despite improved knowledge and techniques of care, there have been signs of worsening morbidity/mortality and a seeming disconnect between physician and patients as regards communication of care strategies. In an attempt to fashion innovative educational strategies to enhance primary care physician (PCP) and caregiver efficiencies in improving patient outcomes (clinical and financial), the Preceptor model of one-to-one PCP/asthma specialist has been developed. Review of utilization and prescribing data demonstrates a clear pattern of statistically significant cost improvement in the aggregate care setting, as well as improved appropriateness of use of proper asthma medications. Use of the Preceptor model of PCP learning is an effective and unique way to enhance both caregiver knowledge and improved care efficiency in asthma management

    JeffCARE Diabetes Mellitus Abstract Study

    Get PDF
    No abstract available

    Task analysis for error identification: Theory, method and validation

    Get PDF
    This paper presents the underlying theory of Task Analysis for Error Identification. The aim is to illustrate the development of a method that has been proposed for the evaluation of prototypical designs from the perspective of predicting human error. The paper presents the method applied to representative examples. The methodology is considered in terms of the various validation studies that have been conducted, and is discussed in the light of a specific case study

    Resonance-like piezoelectric electron-phonon interaction in layered structures

    Full text link
    We show that mismatch of the piezoelectric parameters between layers of multiple-quantum well structures leads to modification of the electron-phonon interaction. In particular, short-wavelength phonons propagating perpendicular to the layers with wavevector close to 2πn/d2\pi n/d, where dd is the period of the structure, induce a strong smoothly-varying component of the piezo-potential. As a result, they interact efficiently with 2D electrons. It is shown, that this property leads to emission of collimated quasi-monochromatic beams of high-frequency acoustic phonons from hot electrons in multiple-quantum well structures. We argue that this effect is responsible for the recently reported monochromatic transverse phonon emission from optically excited GaAs/AlAs superlattices, and provide additional experimental evidences of this.Comment: 6 pages, 7 figure

    Sound scattering by several zooplankton groups. I. Experimental determination of dominant scattering mechanisms

    Get PDF
    Author Posting. © Acoustical Society of America, 1998. This article is posted here by permission of Acoustical Society of America for personal use, not for redistribution. The definitive version was published in Journal of the Acoustical Society of America 103 (1998): 225-235, doi:10.1121/1.421469.The acoustic scattering properties of live individual zooplankton from several gross anatomical groups have been investigated. The groups involve (1) euphausiids (Meganyctiphanes norvegica) whose bodies behave acoustically as a fluid material, (2) gastropods (Limacina retroversa) whose bodies include a hard elastic shell, and (3) siphonophores (Agalma okeni or elegans and Nanomia cara) whose bodies contain a gas inclusion (pneumatophore). The animals were collected from ocean waters off New England (Slope Water, Georges Bank, and the Gulf of Maine). The scattering properties were measured over parts or all of the frequency range 50 kHz to 1 MHz in a laboratory-style pulse-echo setup in a large tank at sea using live fresh specimens. Individual echoes as well as averages and ping-to-ping fluctuations of repeated echoes were studied. The material type of each group is shown to strongly affect both the overall echo level and pattern of the target strength versus frequency plots. In this first article of a two-part series, the dominant scattering mechanisms of the three animal types are determined principally by examining the structure of both the frequency spectra of individual broadband echoes and the compressed pulse (time series) output. Other information is also used involving the effect on overall levels due to (1) animal orientation and (2) tissue in animals having a gas inclusion (siphonophores). The results of this first paper show that (1) the euphausiids behave as weakly scattering fluid bodies and there are major contributions from at least two parts of the body to the echo (the number of contributions depends upon angle of orientation and shape), (2) the gastropods produce echoes from the front interface and possibly from a slow-traveling circumferential (Lamb) wave, and (3) the gas inclusion of the siphonophore dominates the echoes, but the tissue plays a role in the scattering and is especially important when analyzing echoes from individual animals on a ping-by-ping basis. The results of this paper serve as the basis for the development of acoustic scattering models in the companion paper [Stanton et al., J. Acoust. Soc. Am. 103, 236–253 (1998)].This work was supported by the National Science Foundation Grant No. OCE- 9201264, the U.S. Office of Naval Research Grant Nos. N00014-89-J-1729 and N00014-95-1-0287, and the MIT/ WHOI Joint Graduate Education Program

    A field study of team working in a new human supervisory control system

    Get PDF
    This paper presents a case study of an investigation into team behaviour in an energy distribution company. The main aim was to investigate the impact of major changes in the company on system performance, comprising human and technical elements. A socio-technical systems approach was adopted. There were main differences between the teams investigated in the study: the time of year each control room was studied (i.e. summer or winter),the stage of development each team was in (i.e. 10 months), and the team structure (i.e. hierarchical or heterarchical). In all other respects the control rooms were the same: employing the same technology and within the same organization. The main findings were: the teams studied in the winter months were engaged in more `planning’ and `awareness’ type of activities than those studies in the summer months. Newer teams seem to be engaged in more sharing of information than older teams, which maybe indicative of the development process. One of the hierarchical teams was engaged in more `system-driven’ activities than the heterarchical team studied at the same time of year. Finally, in general, the heterarchical team perceived a greater degree of team working culture than its hierarchical counterparts. This applied research project confirms findings from laboratory research and emphasizes the importance of involving ergonomics in the design of team working in human supervisory control

    Chirality-Selective Excitation of Coherent Phonons in Carbon Nanotubes

    Full text link
    Using pre-designed trains of femtosecond optical pulses, we have selectively excited coherent phonons of the radial breathing mode of specific-chirality single-walled carbon nanotubes within an ensemble sample. By analyzing the initial phase of the phonon oscillations, we prove that the tube diameter initially increases in response to ultrafast photoexcitation. Furthermore, from excitation profiles, we demonstrate that an excitonic absorption peak of carbon nanotubes periodically oscillates as a function of time when the tube diameter undergoes radial breathing mode oscillations.Comment: 4 pages, 4 figure

    Condom-use Skills Checklist: A Proxy for Assessing Condom-use Knowledge and Skills When Direct Observation Is Not Possible

    Get PDF
    Because of the continued importance of correct condom-use in controlling the HIV epidemic and the limited availability of tools for assessing correct condom-use, methods for assessing condom-application skills, especially when direct observation is not feasible, are needed. Accordingly, in the context of a high-risk population (The Bahamas) for HIV, a 17-item scale—the Condom-use Skills Checklist (CUSC)—was developed for use among young adolescents and adults. The rationale and approach to developing the scale and some measures of internal consistency, construct validity, and criterion-related validity have been described. It is concluded that the scale offers a reasonable alternative to direct observation among older subjects and that further development may make it more useful among pre-adolescents
    • 

    corecore