729 research outputs found

    The energetics of protein-lipid interactions as viewed by molecular simulations

    Get PDF
    Membranes are formed from a bilayer containing diverse lipid species with which membrane proteins interact. Thus, integral membrane proteins are embedded in a bilayer, where they interact with lipids from their surroundings, whilst peripheral membrane proteins bind to lipids at the surface of membranes. Lipid interactions can influence the function of membrane proteins, either directly or allosterically. Both experimental (structural) and computational approaches can reveal lipid binding sites on membrane proteins. It is therefore important to understand the free energies of these interactions. This affords a more complete view of the engagement of a particular protein with the biological membrane surrounding it. Here, we describe a number of computational approaches currently in use for this purpose, including recent advances using both free energy and unbiased simulation methods. In particular we focus on interactions of integral membrane proteins with cholesterol, and with anionic lipids such as phosphatidylinositol 4,5-bisphosphate and cardiolipin. Peripheral membrane proteins are exemplified via interactions of PH domains with phosphoinositide-containing membranes. We summarise the current state of the field and provide an outlook on likely future directions of investigation

    A Synthesis of the Evidence for Managing Stress at Work: A Review of the Reviews Reporting on Anxiety, Depression, and Absenteeism

    Get PDF
    Background. Psychosocial stressors in the workplace are a cause of anxiety and depressive illnesses, suicide and family disruption. Methods. The present review synthesizes the evidence from existing systematic reviews published between 1990 and July 2011. We assessed the effectiveness of individual, organisational and mixed interventions on two outcomes: mental health and absenteeism. Results. In total, 23 systematic reviews included 499 primary studies; there were 11 meta-analyses and 12 narrative reviews. Meta-analytic studies found a greater effect size of individual interventions on individual outcomes. Organisational interventions showed mixed evidence of benefit. Organisational programmes for physical activity showed a reduction in absenteeism. The findings from the meta-analytic reviews were consistent with the findings from the narrative reviews. Specifically, cognitive-behavioural programmes produced larger effects at the individual level compared with other interventions. Some interventions appeared to lead to deterioration in mental health and absenteeism outcomes.Gaps in the literature include studies of organisational outcomes like absenteeism, the influence of specific occupations and size of organisations, and studies of the comparative effectiveness of primary, secondary and tertiary prevention. Conclusions. Individual interventions (like CBT) improve individuals' mental health. Physical activity as an organisational intervention reduces absenteeism. Research needs to target gaps in the evidence

    Structure and dynamics of the E. coli chemotaxis core signaling complex by cryo-electron tomography and molecular simulations

    Get PDF
    To enable the processing of chemical gradients, chemotactic bacteria possess large arrays of transmembrane chemoreceptors, the histidine kinase CheA, and the adaptor protein CheW, organized as coupled core-signaling units (CSU). Despite decades of study, important questions surrounding the molecular mechanisms of sensory signal transduction remain unresolved, owing especially to the lack of a high-resolution CSU structure. Here, we use cryo-electron tomography and sub-tomogram averaging to determine a structure of the Escherichia coli CSU at sub-nanometer resolution. Based on our experimental data, we use molecular simulations to construct an atomistic model of the CSU, enabling a detailed characterization of CheA conformational dynamics in its native structural context. We identify multiple, distinct conformations of the critical P4 domain as well as asymmetries in the localization of the P3 bundle, offering several novel insights into the CheA signaling mechanism

    Structural basis of proton-coupled potassium transport in the KUP family

    Get PDF
    Potassium homeostasis is vital for all organisms, but is challenging in single-celled organisms like bacteria and yeast and immobile organisms like plants that constantly need to adapt to changing external conditions. KUP transporters facilitate potassium uptake by the co-transport of protons. Here, we uncover the molecular basis for transport in this widely distributed family. We identify the potassium importer KimA from Bacillus subtilis as a member of the KUP family, demonstrate that it functions as a K+/H+ symporter and report a 3.7 Å cryo-EM structure of the KimA homodimer in an inward-occluded, trans-inhibited conformation. By introducing point mutations, we identify key residues for potassium and proton binding, which are conserved among other KUP proteins

    A lipid gating mechanism for the channel-forming O antigen ABC transporter

    Get PDF
    Extracellular glycan biosynthesis is a widespread microbial protection mechanism. In Gram-negative bacteria, the O antigen polysaccharide represents the variable region of outer membrane lipopolysaccharides. Fully assembled lipid-linked O antigens are translocated across the inner membrane by the WzmWzt ABC transporter for ligation to the lipopolysaccharide core, with the transporter forming a continuous transmembrane channel in a nucleotide-free state. Here, we report its structure in an ATP-bound conformation. Large structural changes within the nucleotide-binding and transmembrane regions push conserved hydrophobic residues at the substrate entry site towards the periplasm and provide a model for polysaccharide translocation. With ATP bound, the transporter forms a large transmembrane channel with openings toward the membrane and periplasm. The channel’s periplasmic exit is sealed by detergent molecules that block solvent permeation. Molecular dynamics simulation data suggest that, in a biological membrane, lipid molecules occupy this periplasmic exit and prevent water flux in the transporter’s resting state

    Negative Aspects of Close Relationships as Risk Factors for Cognitive Aging

    Get PDF
    The extent to which social relationships influence cognitive aging is unclear. In this study, we investigated the association of midlife quality of close relationships with subsequent cognitive decline. Participants in the Whitehall II Study (n = 5,873; ages 45-69 years at first cognitive assessment) underwent executive function and memory tests 3 times over a period of 10 years (1997-1999 to 2007-2009). Midlife negative and positive aspects of close relationships were assessed twice using the Close Persons Questionnaire during the 8 years preceding cognitive assessment. Negative aspects of close relationships, but not positive aspects, were associated with accelerated cognitive aging. Participants in the top third of reported negative aspects of close relationships experienced a faster 10-year change in executive function (-0.04 standard deviation, 95% confidence interval: -0.08, -0.01) than those in the bottom third, which was comparable with 1 extra year of cognitive decline for participants aged 60 years after adjustment for sociodemographic and health status. Longitudinal analysis found no evidence of reverse causality. This study highlights the importance of differentiating aspects of social relationships to evaluate their unique associations with cognitive aging

    Insights into membrane protein–lipid interactions from free energy calculations

    Get PDF
    Integral membrane proteins are regulated by specific interactions with lipids from the surrounding bilayer. The structures of protein–lipid complexes can be determined through a combination of experimental and computational approaches, but the energetic basis of these interactions is difficult to resolve. Molecular dynamics simulations provide the primary computational technique to estimate the free energies of these interactions. We demonstrate that the energetics of protein–lipid interactions may be reliably and reproducibly calculated using three simulation-based approaches: potential of mean force calculations, alchemical free energy perturbation, and well-tempered metadynamics. We employ these techniques within the framework of a coarse-grained force field and apply them to both bacterial and mammalian membrane protein–lipid systems. We demonstrate good agreement between the different techniques, providing a robust framework for their automated implementation within a pipeline for annotation of newly determined membrane protein structures
    corecore