100 research outputs found

    The mechanism of long-term coarsening of granular mixtures in rotating drums

    Full text link
    Three fundamental segregation and pattern formation processes are known in granular mixtures in a rotating cylindrical drum: radial segregation, axial banding, and coarsening of the band pattern. While the mechanism for the first effect is well understood and for the second effect, several models have been proposed, the long-term coarsening mechanism remained unexplained so far. We demonstrate that the unidirectional flow between the bands in an axially segregated pattern is driven by small differences in size of the small beads at the band edges. Due to a process of microsegregation inside each band of small particles, which was so far unrecognized, this difference in diameter will be effective in all experiments with polydisperse beads. In consequence the stability of individual bands can be easily controlled by minor alterations of their composition. Our results make evident that a new mechanism as the driving force behind the axial particle flow has to be sought. We suggest possible hypotheses for such a mechanism

    On-off Intermittency in Stochastically Driven Electrohydrodynamic Convection in Nematics

    Get PDF
    We report on-off intermittency in electroconvection of nematic liquid crystals driven by a dichotomous stochastic electric voltage. With increasing voltage amplitude we observe laminar phases of undistorted director state interrupted by shorter bursts of spatially regular stripes. Near a critical value of the amplitude the distribution of the duration of laminar phases is governed over several decades by a power law with exponent -3/2. The experimental findings agree with simulations of the linearized electrohydrodynamic equations near the sample stability threshold

    Cooling of a granular gas mixture in microgravity

    Full text link
    Granular gases are fascinating non-equilibrium systems with interesting features such as spontaneous clustering and non-Gaussian velocity distributions. Mixtures of different components represent a much more natural composition than monodisperse ensembles, but attracted comparably little attention so far. We present the first experimental observation and characterization of a mixture of rod-like particles with different sizes and masses in microgravity. Kinetic energy decay rates during granular cooling and collision rates were determined and Haff's law for homogeneous granular cooling was confirmed. Thereby, energy equipartition between the mixture components and between individual degrees of freedom is violated. Heavier particles keep a slightly higher average kinetic energy than lighter ones. Experimental results are supported by numerical simulations.Comment: 16 Pages, 7 figures; corrected typo in author's nam

    Effects of grain shape on packing and dilatancy of sheared granular materials

    Get PDF
    Granular material exposed to shear shows a variety of unique phenomena: Reynolds dilatancy, positional order and orientational order effects may compete in the shear zone. We study granular packings consisting of macroscopic prolate, oblate and spherical grains and compare their behaviour. X-ray tomography is used to determine the particle positions and orientations in a cylindrical split bottom shear cell. Packing densities and the arrangements of individual particles in the shear zone are evaluated. For anisometric particles, we observe the competition of two opposite effects. One the one hand, the sheared granulate is dilated, but on the other hand the particles reorient and align with respect to the streamlines. Even though aligned cylinders in principle may achieve higher packing densities, this alignment compensates for the effect of dilatancy only partially. The complex rearrangements lead to a depression of the surface above the well oriented region while neigbouring parts still show the effect of dilation in the form of heaps. For grains with isotropic shapes, the surface remains rather flat. Perfect monodisperse spheres crystallize in the shear zone, whereby positional order partially overcompensates dilatancy effects. However, already slight deviations from the ideal monodisperse sphere shape inhibit crystallization.Comment: 12 pages, 13 figures, accepted in Soft Matte
    corecore