98 research outputs found

    In situ scanning electrochemical probe microscopy for energy applications

    Get PDF
    High resolution electrochemical imaging methods provide opportunities to study localized phenomena on electrode surfaces. Here, we review recent advances in scanning electrochemical microscopy (SECM) to study materials involved in (electrocatalytic) energy-related applications. In particular, we discuss SECM as a powerful screening technique and also advances in novel techniques based on micro- and nanopipets, such as the scanning micropipet contact method and scanning electrochemical cell microscopy and their use in energy-related research

    Spatially resolved electrochemistry in ionic liquids : surface structure effects on triiodide reduction at platinum electrodes

    Get PDF
    Understanding the relationship between electrochemical activity and electrode structure is vital for improving the efficiency of dye-sensitized solar cells. Here, the reduction of triiodide to iodide in 1-butyl-3-methylimidazolium tetrafluoroborate ([BMIm][BF4]) room temperature ionic liquid (RTIL) is investigated on polycrystalline platinum using scanning electrochemical cell microscopy (SECCM) and correlated to the crystallographic orientation from electron backscatter diffraction (EBSD). Although the rate determining step in all grains was the first electron transfer, significant grain-dependent variations in activity were revealed, with grains with a dominant (110) crystallographic character exhibiting higher catalytic activity compared to those with a major (100) orientation. The SECCM technique is demonstrated to resolve heterogeneity in activity, highlighting that methods incorporating polycrystalline electrodes miss vital details for understanding and optimizing electrocatalysts. An additional advantage of the SECCM over single-crystal techniques is its ability to probe high index facets

    Landing and catalytic characterization of individual nanoparticles on electrode surfaces

    Get PDF
    We demonstrate a novel and versatile pipet-based approach to study the landing of individual nanoparticles (NPs) on various electrode materials without any need for encapsulation or fabrication of complex substrate electrode structures, providing great flexibility with respect to electrode materials. Because of the small electrode area defined by the pipet dimensions, the background current is low, allowing for the detection of minute current signals with good time resolution. This approach was used to characterize the potential-dependent activity of Au NPs and to measure the catalytic activity of a single NP on a TEM grid, combining electrochemical and physical characterization at the single NP level for the first time. Such measurements open up the possibility of studying the relation between the size, structure and activity of catalyst particles unambiguously

    Scanning electrochemical cell microscopy : a versatile technique for nanoscale electrochemistry and functional imaging

    Get PDF
    Scanning electrochemical cell microscopy (SECCM) is a new pipette-based imaging technique purposely designed to allow simultaneous electrochemical, conductance, and topographical visualization of surfaces and interfaces. SECCM uses a tiny meniscus or droplet, confined between the probe and the surface, for high-resolution functional imaging and nanoscale electrochemical measurements. Here we introduce this technique and provide an overview of its principles, instrumentation, and theory. We discuss the power of SECCM in resolving complex structure-activity problems and provide considerable new information on electrode processes by referring to key example systems, including graphene, graphite, carbon nanotubes, nanoparticles, and conducting diamond. The many longstanding questions that SECCM has been able to answer during its short existence demonstrate its potential to become a major technique in electrochemistry and interfacial science

    Electrochemical characterization and regeneration of sulfur poisoned Pt catalysts in aqueous media

    Get PDF
    Understanding the poisoning and recovery of precious metal catalysts is greatly relevant for the chemical industry dealing with the synthesis of organic compounds. For example, hydrogenation reactions typically use platinum catalysts and sulfuric acid media, leading to poisoning by sulfur-containing species. In this work, we have applied electrochemical methods to understand the status and recovery of Pt catalysts by studying the electro-oxidation of a family of sulfur-containing species adsorbed at several types of Pt electrodes: (i) polycrystalline Pt foil; (ii) Pt single-crystal electrodes; and (iii) Pt nanoparticles supported on Vulcan carbon. The results obtained from polycrystalline Pt electrodes and Pt nanoparticles supported on Vulcan carbon demonstrate that all sulfur-containing species with different oxidation states (2-, 3+ and 4+) lead to the poisoning of Pt active sites. X-ray photoelectron spectroscopy (XPS) analysis was employed to elucidate the chemical state of sulfur species during the recovery process. The degree of poisoning decreased with increased sulfur oxidation state, while the rate of regeneration of the Pt surfaces generally increases with the oxidation state of the sulfur species. Finally, the use of Pt single-crystal electrodes reveals the surface-structure sensitivity of the oxidation of the sulfur species. This information could be useful in designing catalysts that are less susceptible to poisoning and/or more easily regenerated. These studies demonstrate voltammetry to be a powerful method for assessing the status of platinum surfaces and for recovering catalyst activity, such that electrochemical methods could find applications as sensors in catalysis and for catalyst recovery in-situ

    HEROIC: a 5-year observational cohort study aimed at identifying novel factors that drive diabetic kidney disease: rationale and study protocol

    Get PDF
    Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ. INTRODUCTION: Diabetic kidney disease (DKD) is the leading cause of end-stage kidney disease worldwide and a major cause of premature mortality in diabetes mellitus (DM). While improvements in care have reduced the incidence of kidney disease among those with DM, the increasing prevalence of DM means that the number of patients worldwide with DKD is increasing. Improved understanding of the biology of DKD and identification of novel therapeutic targets may lead to new treatments. A major challenge to progress has been the heterogeneity of the DKD phenotype and renal progression. To investigate the heterogeneity of DKD we have set up The East and North London Diabetes Cohort (HEROIC) Study, a secondary care-based, multiethnic observational study of patients with biopsy-proven DKD. Our primary objective is to identify histological features of DKD associated with kidney endpoints in a cohort of patients diagnosed with type 1 and type 2 DM, proteinuria and kidney impairment. METHODS AND ANALYSIS: HEROIC is a longitudinal observational study that aims to recruit 500 patients with DKD at high-risk of renal and cardiovascular events. Demographic, clinical and laboratory data will be collected and assessed annually for 5 years. Renal biopsy tissue will be collected and archived at recruitment. Blood and urine samples will be collected at baseline and during annual follow-up visits. Measured glomerular filtration rate (GFR), echocardiography, retinal optical coherence tomography angiography and kidney and cardiac MRI will be performed at baseline and twice more during follow-up. The study is 90% powered to detect an association between key histological and imaging parameters and a composite of death, renal replacement therapy or a 30% decline in estimated GFR. ETHICS AND DISSEMINATION: Ethical approval has been obtained from the Bloomsbury Research Ethics Committee (REC 18-LO-1921). Any patient identifiable data will be stored on a password-protected National Health Services N3 network with full audit trail. Anonymised imaging data will be stored in a ISO27001-certificated data warehouse.Results will be reported through peer-reviewed manuscripts and conferences and disseminated to participants, patients and the public using web-based and social media engagement tools as well as through public events

    Pseudo-single crystal electrochemistry on polycrystalline electrodes : visualizing activity at grains and grain boundaries on platinum for the Fe2+/Fe3+ redox reaction

    Get PDF
    The influence of electrode surface structure on electrochemical reaction rates and mechanisms is a major theme in electrochemical research, especially as electrodes with inherent structural heterogeneities are used ubiquitously. Yet, probing local electrochemistry and surface structure at complex surfaces is challenging. In this paper, high spatial resolution scanning electrochemical cell microscopy (SECCM) complemented with electron backscatter diffraction (EBSD) is demonstrated as a means of performing ‘pseudo-single-crystal’ electrochemical measurements at individual grains of a polycrystalline platinum electrode, while also allowing grain boundaries to be probed. Using the Fe2+/3+ couple as an illustrative case, a strong correlation is found between local surface structure and electrochemical activity. Variations in electrochemical activity for individual high index grains, visualized in a weakly adsorbing perchlorate medium, show that there is higher activity on grains with a significant (101) orientation contribution, compared to those with (001) and (111) contribution, consistent with findings on single-crystal electrodes. Interestingly, for Fe2+ oxidation in a sulfate medium a different pattern of activity emerges. Here, SECCM reveals only minor variations in activity between individual grains, again consistent with single-crystal studies, with a greatly enhanced activity at grain boundaries. This suggests that these sites may contribute significantly to the overall electrochemical behavior measured on the macroscale
    • 

    corecore