7,627 research outputs found

    Application of the Principle of Maximum Conformality to Top-Pair Production

    Full text link
    A major contribution to the uncertainty of finite-order perturbative QCD predictions is the perceived ambiguity in setting the renormalization scale μr\mu_r. For example, by using the conventional way of setting μr∈[mt/2,2mt]\mu_r \in [m_t/2,2m_t], one obtains the total ttˉt \bar{t} production cross-section σttˉ\sigma_{t \bar{t}} with the uncertainty \Delta \sigma_{t \bar{t}}/\sigma_{t \bar{t}}\sim ({}^{+3%}_{-4%}) at the Tevatron and LHC even for the present NNLO level. The Principle of Maximum Conformality (PMC) eliminates the renormalization scale ambiguity in precision tests of Abelian QED and non-Abelian QCD theories. In this paper we apply PMC scale-setting to predict the ttˉt \bar t cross-section σttˉ\sigma_{t\bar{t}} at the Tevatron and LHC colliders. It is found that σttˉ\sigma_{t\bar{t}} remains almost unchanged by varying μrinit\mu^{\rm init}_r within the region of [mt/4,4mt][m_t/4,4m_t]. The convergence of the expansion series is greatly improved. For the (qqˉ)(q\bar{q})-channel, which is dominant at the Tevatron, its NLO PMC scale is much smaller than the top-quark mass in the small xx-region, and thus its NLO cross-section is increased by about a factor of two. In the case of the (gg)(gg)-channel, which is dominant at the LHC, its NLO PMC scale slightly increases with the subprocess collision energy s\sqrt{s}, but it is still smaller than mtm_t for s≲1\sqrt{s}\lesssim 1 TeV, and the resulting NLO cross-section is increased by ∼20\sim 20%. As a result, a larger σttˉ\sigma_{t\bar{t}} is obtained in comparison to the conventional scale-setting method, which agrees well with the present Tevatron and LHC data. More explicitly, by setting mt=172.9±1.1m_t=172.9\pm 1.1 GeV, we predict σTevatron,  1.96 TeV=7.626−0.257+0.265\sigma_{\rm Tevatron,\;1.96\,TeV} = 7.626^{+0.265}_{-0.257} pb, σLHC,  7 TeV=171.8−5.6+5.8\sigma_{\rm LHC,\;7\,TeV} = 171.8^{+5.8}_{-5.6} pb and σLHC,  14 TeV=941.3−26.5+28.4\sigma_{\rm LHC,\;14\,TeV} = 941.3^{+28.4}_{-26.5} pb. [full abstract can be found in the paper.]Comment: 15 pages, 11 figures, 5 tables. Fig.(9) is correcte

    Self-Consistency Requirements of the Renormalization Group for Setting the Renormalization Scale

    Full text link
    In conventional treatments, predictions from fixed-order perturbative QCD calculations cannot be fixed with certainty due to ambiguities in the choice of the renormalization scale as well as the renormalization scheme. In this paper we present a general discussion of the constraints of the renormalization group (RG) invariance on the choice of the renormalization scale. We adopt the RG based equations, which incorporate the scheme parameters, for a general exposition of RG invariance, since they simultaneously express the invariance of physical observables under both the variation of the renormalization scale and the renormalization scheme parameters. We then discuss the self-consistency requirements of the RG, such as reflexivity, symmetry, and transitivity, which must be satisfied by the scale-setting method. The Principle of Minimal Sensitivity (PMS) requires the slope of the approximant of an observable to vanish at the renormalization point. This criterion provides a scheme-independent estimation, but it violates the symmetry and transitivity properties of the RG and does not reproduce the Gell-Mann-Low scale for QED observables. The Principle of Maximum Conformality (PMC) satisfies all of the deductions of the RG invariance - reflectivity, symmetry, and transitivity. Using the PMC, all non-conformal {βiR}\{\beta^{\cal R}_i\}-terms (R{\cal R} stands for an arbitrary renormalization scheme) in the perturbative expansion series are summed into the running coupling, and one obtains a unique, scale-fixed, scheme-independent prediction at any finite order. The PMC scales and the resulting finite-order PMC predictions are both to high accuracy independent of the choice of initial renormalization scale, consistent with RG invariance. [...More in the text...]Comment: 15 pages, 4 figures. References updated. To be published in Phys.Rev.

    High Energy Photon-Photon Collisions at a Linear Collider

    Full text link
    High intensity back-scattered laser beams will allow the efficient conversion of a substantial fraction of the incident lepton energy into high energy photons, thus significantly extending the physics capabilities of an electron-electron or electron-positron linear collider. The annihilation of two photons produces C=+ final states in virtually all angular momentum states. The annihilation of polarized photons into the Higgs boson determines its fundamental two-photon coupling as well as determining its parity. Other novel two-photon processes include the two-photon production of charged lepton pairs, vector boson pairs, as well as supersymmetric squark and slepton pairs and Higgstrahlung. The one-loop box diagram leads to the production of pairs of neutral particles. High energy photon-photon collisions can also provide a remarkably background-free laboratory for studying possibly anomalous WWW W collisions and annihilation. In the case of QCD, each photon can materialize as a quark anti-quark pair which interact via multiple gluon exchange. The diffractive channels in photon-photon collisions allow a novel look at the QCD pomeron and odderon. Odderon exchange can be identified by looking at the heavy quark asymmetry. In the case of electron-photon collisions, one can measure the photon structure functions and its various components. Exclusive hadron production processes in photon-photon collisions test QCD at the amplitude level and measure the hadron distribution amplitudes which control exclusive semi-leptonic and two-body hadronic B-decays.Comment: Invited talk, presented at the 5th International Workshop On Electron-Electron Interactions At TeV Energies, Santa Cruz, California, 12-14 December 200

    Self-avoiding walks crossing a square

    Full text link
    We study a restricted class of self-avoiding walks (SAW) which start at the origin (0, 0), end at (L,L)(L, L), and are entirely contained in the square [0,L]×[0,L][0, L] \times [0, L] on the square lattice Z2{\mathbb Z}^2. The number of distinct walks is known to grow as λL2+o(L2)\lambda^{L^2+o(L^2)}. We estimate λ=1.744550±0.000005\lambda = 1.744550 \pm 0.000005 as well as obtaining strict upper and lower bounds, 1.628<λ<1.782.1.628 < \lambda < 1.782. We give exact results for the number of SAW of length 2L+2K2L + 2K for K=0,1,2K = 0, 1, 2 and asymptotic results for K=o(L1/3)K = o(L^{1/3}). We also consider the model in which a weight or {\em fugacity} xx is associated with each step of the walk. This gives rise to a canonical model of a phase transition. For x<1/μx < 1/\mu the average length of a SAW grows as LL, while for x>1/μx > 1/\mu it grows as L2L^2. Here μ\mu is the growth constant of unconstrained SAW in Z2{\mathbb Z}^2. For x=1/μx = 1/\mu we provide numerical evidence, but no proof, that the average walk length grows as L4/3L^{4/3}. We also consider Hamiltonian walks under the same restriction. They are known to grow as τL2+o(L2)\tau^{L^2+o(L^2)} on the same L×LL \times L lattice. We give precise estimates for τ\tau as well as upper and lower bounds, and prove that τ<λ.\tau < \lambda.Comment: 27 pages, 9 figures. Paper updated and reorganised following refereein

    Strong Violation of Critical Phenomena Universality: Wang-Landau Study of the 2d Blume-Capel Model under Bond Randomness

    Full text link
    We study the pure and random-bond versions of the square lattice ferromagnetic Blume-Capel model, in both the first-order and second-order phase transition regimes of the pure model. Phase transition temperatures, thermal and magnetic critical exponents are determined for lattice sizes in the range L=20-100 via a sophisticated two-stage numerical strategy of entropic sampling in dominant energy subspaces, using mainly the Wang-Landau algorithm. The second-order phase transition, emerging under random bonds from the second-order regime of the pure model, has the same values of critical exponents as the 2d Ising universality class, with the effect of the bond disorder on the specific heat being well described by double-logarithmic corrections, our findings thus supporting the marginal irrelevance of quenched bond randomness. On the other hand, the second-order transition, emerging under bond randomness from the first-order regime of the pure model, has a distinctive universality class with \nu=1.30(6) and \beta/\nu=0.128(5). This amounts to a strong violation of the universality principle of critical phenomena, since these two second-order transitions, with different sets of critical exponents, are between the same ferromagnetic and paramagnetic phases. Furthermore, the latter of these two transitions supports an extensive but weak universality, since it has the same magnetic critical exponent (but a different thermal critical exponent) as a wide variety of two-dimensional systems. In the conversion by bond randomness of the first-order transition of the pure system to second order, we detect, by introducing and evaluating connectivity spin densities, a microsegregation that also explains the increase we find in the phase transition temperature under bond randomness.Comment: Added discussion and references. 10 pages, 6 figures. Published versio

    Ocular manifestations of Hansen's disease

    Get PDF
    A detailed ophthalmic evaluation including slitlamp biomicroscopy, measurement of corneal sensitivity using Cochet and Bonnet aesthesiometer, Schirmer's test and Goldmann applanation tonometry was carried out in 89 patients of Hansen's disease attending the leprosy clinic with or without ocular symptoms and willing to undergo eye evaluation. Thirty-one patients had lepromatous leprosy (8 with erythema nodosum leprosum), 56 patients had borderline disease (13 with reversal reactions) and 2 had tuberculoid disease. In addition to the well documented changes of lagophthalmos (6.7%), uveitis (7.3%) and cataracts (19%), we noted prominent corneal nerves in 133 eyes (74.7%), beaded corneal nerves in 19 eyes (10.7%), corneal scarring in 10 eyes (5.6%), corneal hypoaesthesia in 51 eyes (28%) and dry eye in 18 eyes (13%). Beaded corneal nerves and/or stomal infiltrates occurred mainly in the lepromatous group (75%). Ocular hypotony (IOP less than 12 mm Hg) was not seen more frequently in Hansen's as compared to age and sex matched controls with refractive errors or cataracts (33.7%, vs. 37.8%,p=0.33). Our study highlights the primary corneal involvement with corneal neuropathy as the predominant feature of Hansen's disease

    Diffractive Higgs Production from Intrinsic Heavy Flavors in the Proton

    Full text link
    We propose a novel mechanism for exclusive diffractive Higgs production pp→pHppp \to p H p in which the Higgs boson carries a significant fraction of the projectile proton momentum. This mechanism will provide a clear experimental signal for Higgs production due to the small background in this kinematic region. The key assumption underlying our analysis is the presence of intrinsic heavy flavor components of the proton bound state, whose existence at high light-cone momentum fraction xx has growing experimental and theoretical support. We also discuss the implications of this picture for exclusive diffractive quarkonium and other channels.Comment: 30 pages, 5 figure

    Hard diffraction from parton rescattering in QCD

    Full text link
    We analyze the QCD dynamics of diffractive deep inelastic scattering. The presence of a rapidity gap between the target and diffractive system requires that the target remnant emerges in a color singlet state, which we show is made possible by the soft rescattering of the struck quark. This rescattering is described by the path-ordered exponential (Wilson line) in the expression for the parton distribution function of the target. The multiple scattering of the struck parton via instantaneous interactions in the target generates dominantly imaginary diffractive amplitudes, giving rise to an "effective pomeron" exchange. The pomeron is not an intrinsic part of the proton but a dynamical effect of the interaction. This picture also applies to diffraction in hadron-initiated processes. Due to the different color environment the rescattering is different in virtual photon- and hadron-induced processes, explaining the observed non-universality of diffractive parton distributions. This framework provides a theoretical basis for the phenomenologically successful Soft Color Interaction model which includes rescattering effects and thus generates a variety of final states with rapidity gaps. We discuss developments of the SCI model to account for the color coherence features of the underlying subprocesses.Comment: 12 pages, 9 figures, REVTeX4. Somewhat expanded and modified version, two new subsections added. To appear in PR
    • …
    corecore