6,058 research outputs found

    Human complement factor H

    Get PDF
    We isolated cDNA clones coding for the functionally important tryptic N-terminal38- kDa fragment of human complement control protein factor H using polyclonal and monoclonal antibodies to screen a human liver cDNA library cloned in a bacterial expression vector, PEX-1. By testing the reactivity of antibodies specific for the recombinant proteins produced by individual clones with proteolytic fragments of serum H the exact position of these cDNA clones within H was mapped. One clone, H-19, coding for the 38-kDa fragment of H was sequenced and found to code for 289 amino acids derived from the 38-kDa N-terminal fragment as well as for the first 108 amino acids belonging to the complementary 142-kDa tryptic fragment. The derived protein sequence could be arranged in 6 highly homologous repeats of about 60 amino acids each, the homology between the repeats being determined by the characteristic position of cysteine, proline, glycine, tyrosine and tryptophane residues. The region coding for the epitope recognized by one of our monoclonal antibodies was localized by subcloning restriction fragments of H-19 into the expression plasmid and testing for the expression of this epitope

    Scaling and memory of intraday volatility return intervals in stock market

    Full text link
    We study the return interval τ\tau between price volatilities that are above a certain threshold qq for 31 intraday datasets, including the Standard & Poor's 500 index and the 30 stocks that form the Dow Jones Industrial index. For different threshold qq, the probability density function Pq(τ)P_q(\tau) scales with the mean interval τˉ\bar{\tau} as Pq(τ)=τˉ−1f(τ/τˉ)P_q(\tau)={\bar{\tau}}^{-1}f(\tau/\bar{\tau}), similar to that found in daily volatilities. Since the intraday records have significantly more data points compared to the daily records, we could probe for much higher thresholds qq and still obtain good statistics. We find that the scaling function f(x)f(x) is consistent for all 31 intraday datasets in various time resolutions, and the function is well approximated by the stretched exponential, f(x)∼e−axγf(x)\sim e^{-a x^\gamma}, with γ=0.38±0.05\gamma=0.38\pm 0.05 and a=3.9±0.5a=3.9\pm 0.5, which indicates the existence of correlations. We analyze the conditional probability distribution Pq(τ∣τ0)P_q(\tau|\tau_0) for τ\tau following a certain interval τ0\tau_0, and find Pq(τ∣τ0)P_q(\tau|\tau_0) depends on τ0\tau_0, which demonstrates memory in intraday return intervals. Also, we find that the mean conditional interval increases with τ0\tau_0, consistent with the memory found for Pq(τ∣τ0)P_q(\tau|\tau_0). Moreover, we find that return interval records have long term correlations with correlation exponents similar to that of volatility records.Comment: 19 pages, 8 figure

    Effect of discontinuity in threshold distribution on the critical behaviour of a random fiber bundle

    Full text link
    The critical behaviour of a Random Fiber Bundle Model with mixed uniform distribution of threshold strengths and global load sharing rule is studied with a special emphasis on the nature of distribution of avalanches for different parameters of the distribution. The discontinuity in the threshold strength distribution of fibers non-trivially modifies the critical stress as well as puts a restriction on the allowed values of parameters for which the recursive dynamics approach holds good. The discontinuity leads to a non-universal behaviour in the avalanche size distribution for smaller values of avalanche size. We observe that apart from the mean field behaviour for larger avalanches, a new behaviour for smaller avalanche size is observed as a critical threshold distribution is approached. The phenomenological understanding of the above result is provided using the exact analytical result for the avalanche size distribution. Most interestingly,the prominence of non-universal behaviour in avalanche size distribution depends on the system parameters.Comment: 6 pages, 4 figures, text and figures modifie

    Surface phase transitions in one-dimensional channels arranged in a triangular cross-sectional structure: Theory and Monte Carlo simulations

    Get PDF
    Monte Carlo simulations and finite-size scaling analysis have been carried out to study the critical behavior in a submonolayer lattice-gas of interacting monomers adsorbed on one-dimensional channels arranged in a triangular cross-sectional structure. The model mimics a nanoporous environment, where each nanotube or unit cell is represented by a one-dimensional array. Two kinds of lateral interaction energies have been considered: 1)1) wLw_L, interaction energy between nearest-neighbor particles adsorbed along a single channel and 2)2) wTw_T, interaction energy between particles adsorbed across nearest-neighbor channels. For wL/wT=0w_L/w_T=0 and wT>0w_T > 0, successive planes are uncorrelated, the system is equivalent to the triangular lattice and the well-known (3×3)(\sqrt{3} \times \sqrt{3}) [(3×3)∗][(\sqrt{3} \times \sqrt{3})^*] ordered phase is found at low temperatures and a coverage, θ\theta, of 1/3 [2/3][2/3]. In the more general case (wL/wT≠0w_L/w_T \neq 0 and wT>0w_T > 0), a competition between interactions along a single channel and a transverse coupling between sites in neighboring channels allows to evolve to a three-dimensional adsorbed layer. Consequently, the (3×3)(\sqrt{3} \times \sqrt{3}) and (3×3)∗(\sqrt{3} \times \sqrt{3})^* structures "propagate" along the channels and new ordered phases appear in the adlayer. The Monte Carlo technique was combined with the recently reported Free Energy Minimization Criterion Approach (FEMCA), to predict the critical temperatures of the order-disorder transformation. The excellent qualitative agreement between simulated data and FEMCA results allow us to interpret the physical meaning of the mechanisms underlying the observed transitions.Comment: 24 pages, 6 figure

    Power Law of Customers' Expenditures in Convenience Stores

    Full text link
    In a convenience store chain, a tail of the cumulative density function of the expenditure of a person during a single shopping trip follows a power law with an exponent of -2.5. The exponent is independent of the location of the store, the shopper's age, the day of week, and the time of day.Comment: 9 pages, 5 figures. Accepted for publication in Journal of the Physical Society of Japan Vol.77No.

    A generalized spherical version of the Blume-Emery-Griffits model with ferromagnetic and antiferromagnetic interactions

    Full text link
    We have investigated analitycally the phase diagram of a generalized spherical version of the Blume-Emery-Griffiths model that includes ferromagnetic or antiferromagnetic spin interactions as well as quadrupole interactions in zero and nonzero magnetic field. We show that in three dimensions and zero magnetic field a regular paramagnetic-ferromagnetic (PM-FM) or a paramagnetic-antiferromagnetic (PM-AFM) phase transition occurs whenever the magnetic spin interactions dominate over the quadrupole interactions. However, when spin and quadrupole interactions are important, there appears a reentrant FM-PM or AFM-PM phase transition at low temperatures, in addition to the regular PM-FM or PM-AFM phase transitions. On the other hand, in a nonzero homogeneous external magnetic field HH, we find no evidence of a transition to the state with spontaneous magnetization for FM interactions in three dimensions. Nonethelesss, for AFM interactions we do get a scenario similar to that described above for zero external magnetic field, except that the critical temperatures are now functions of HH. We also find two critical field values, Hc1H_{c1}, at which the reentrance phenomenon dissapears and Hc2H_{c2} (Hc1≈0.5Hc2H_{c1}\approx 0.5H_{c2}), above which the PM-AFM transition temperature vanishes.Comment: 21 pages, 6 figs. Title changed, abstract and introduction as well as section IV were rewritten relaxing the emphasis on spin S=1 and Figs. 5 an 6 were improved in presentation. However, all the results remain valid. Accepted for publication in Phys. Rev.

    Earthquake networks based on similar activity patterns

    Full text link
    Earthquakes are a complex spatiotemporal phenomenon, the underlying mechanism for which is still not fully understood despite decades of research and analysis. We propose and develop a network approach to earthquake events. In this network, a node represents a spatial location while a link between two nodes represents similar activity patterns in the two different locations. The strength of a link is proportional to the strength of the cross-correlation in activities of two nodes joined by the link. We apply our network approach to a Japanese earthquake catalog spanning the 14-year period 1985-1998. We find strong links representing large correlations between patterns in locations separated by more than 1000 km, corroborating prior observations that earthquake interactions have no characteristic length scale. We find network characteristics not attributable to chance alone, including a large number of network links, high node assortativity, and strong stability over time.Comment: 8 pages text, 9 figures. Updated from previous versio

    Dynamically Slow Processes in Supercooled Water Confined Between Hydrophobic Plates

    Full text link
    We study the dynamics of water confined between hydrophobic flat surfaces at low temperature. At different pressures, we observe different behaviors that we understand in terms of the hydrogen bonds dynamics. At high pressure, the formation of the open structure of the hydrogen bond network is inhibited and the surfaces can be rapidly dehydrated by decreasing the temperature. At lower pressure the rapid ordering of the hydrogen bonds generates heterogeneities that are responsible for strong non-exponential behavior of the correlation function, but with no strong increase of the correlation time. At very low pressures, the gradual formation of the hydrogen bond network is responsible for the large increase of the correlation time and, eventually, the dynamical arrest of the system and of the dehydration process.Comment: 14 pages, 3 figure

    The Fractal Geometry of Critical Systems

    Get PDF
    We investigate the geometry of a critical system undergoing a second order thermal phase transition. Using a local description for the dynamics characterizing the system at the critical point T=Tc, we reveal the formation of clusters with fractal geometry, where the term cluster is used to describe regions with a nonvanishing value of the order parameter. We show that, treating the cluster as an open subsystem of the entire system, new instanton-like configurations dominate the statistical mechanics of the cluster. We study the dependence of the resulting fractal dimension on the embedding dimension and the scaling properties (isothermal critical exponent) of the system. Taking into account the finite size effects we are able to calculate the size of the critical cluster in terms of the total size of the system, the critical temperature and the effective coupling of the long wavelength interaction at the critical point. We also show that the size of the cluster has to be identified with the correlation length at criticality. Finally, within the framework of the mean field approximation, we extend our local considerations to obtain a global description of the system.Comment: 1 LaTeX file, 4 figures in ps-files. Accepted for publication in Physical Review

    Quarantine generated phase transition in epidemic spreading

    Get PDF
    We study the critical effect of quarantine on the propagation of epidemics on an adaptive network of social contacts. For this purpose, we analyze the susceptible-infected-recovered (SIR) model in the presence of quarantine, where susceptible individuals protect themselves by disconnecting their links to infected neighbors with probability w, and reconnecting them to other susceptible individuals chosen at random. Starting from a single infected individual, we show by an analytical approach and simulations that there is a phase transition at a critical rewiring (quarantine) threshold w_c separating a phase (w<w_c) where the disease reaches a large fraction of the population, from a phase (w >= w_c) where the disease does not spread out. We find that in our model the topology of the network strongly affects the size of the propagation, and that w_c increases with the mean degree and heterogeneity of the network. We also find that w_c is reduced if we perform a preferential rewiring, in which the rewiring probability is proportional to the degree of infected nodes.Comment: 13 pages, 6 figure
    • …
    corecore