95 research outputs found
Antigen expression determines adenoviral vaccine potency independent of IFN and STING signaling
Recombinant adenoviral vectors (rAds) are lead vaccine candidates for protection against a variety of pathogens, including Ebola, HIV, tuberculosis, and malaria, due to their ability to potently induce T cell immunity in humans. However, the ability to induce protective cellular immunity varies among rAds. Here, we assessed the mechanisms that control the potency of CD8 T cell responses in murine models following vaccination with human-, chimpanzee-, and simian-derived rAds encoding SIV-Gag antigen (Ag). After rAd vaccination, we quantified Ag expression and performed expression profiling of innate immune response genes in the draining lymph node. Human-derived rAd5 and chimpanzee-derived chAd3 were the most potent rAds and induced high and persistent Ag expression with low innate gene activation, while less potent rAds induced less Ag expression and robustly induced innate immunity genes that were primarily associated with IFN signaling. Abrogation of type I IFN or stimulator of IFN genes (STING) signaling increased Ag expression and accelerated CD8 T cell response kinetics but did not alter memory responses or protection. These findings reveal that the magnitude of rAd-induced memory CD8 T cell immune responses correlates with Ag expression but is independent of IFN and STING and provide criteria for optimizing protective CD8 T cell immunity with rAd vaccines
Neuropathological Findings In Chronic Relapsing Experimental Allergic Neuritis Induced In The Lewis Rat By Inoculation With Intradural Root Myelin And Treatment With Low Dose Cyclosporin A
Experimental allergic neuritis (EAN) was induced in Lewis rats by inoculation with bovine intradural root myelin and adjuvants. Rats treated with subcutaneous cyclosporin A (CsA) (4mg/kg on 3 days per week from the day of inoculation until day 29) developed a chronic relapsing course. Tissues from the spinal cord, nerve roots, dorsal root ganglia and sciatic nerve of CsA-treated rats sampled during relapses and remissions were studied during or after episodes of acute EAN. Both control and CsA-treated animals studied in the first episode of EAN had evidence of inflammation and primary demyelination of the nerve roots and dorsal root ganglia. In control and CsA-treated animals in the second episode there was severe inflammation and demyelination and remyelination in the spinal nerves and sciatic nerves and dorsal columns of the spinal cord, particularly in later stages of the disease. In later episodes there was less inflammation, but there was continuing demyelination and onion bulbs were present. In animals sampled after recovery from chronic relapsing EAN onion bulbs were present. Occasional small onion bulbs were also observed in control animals that were inoculated with higher doses of myelin. Plasma cells were present in the inflammatory lesions of later episodes. Mast cells were also observed at different stages of the disease. We conclude that the CsA form of chronic relapsing EAN has clinical and pathological similarities with the human disease, chronic inflammatory demyelinating polyradiculoneuropathy
Mechanisms underlying a thalamocortical transformation during active tactile sensation
During active somatosensation, neural signals expected from movement of the sensors are suppressed in the cortex, whereas information related to touch is enhanced. This tactile suppression underlies low-noise encoding of relevant tactile features and the brainâs ability to make fine tactile discriminations. Layer (L) 4 excitatory neurons in the barrel cortex, the major target of the somatosensory thalamus (VPM), respond to touch, but have low spike rates and low sensitivity to the movement of whiskers. Most neurons in VPM respond to touch and also show an increase in spike rate with whisker movement. Therefore, signals related to self-movement are suppressed in L4. Fast-spiking (FS) interneurons in L4 show similar dynamics to VPM neurons. Stimulation of halorhodopsin in FS interneurons causes a reduction in FS neuron activity and an increase in L4 excitatory neuron activity. This decrease of activity of L4 FS neurons contradicts the "paradoxical effect" predicted in networks stabilized by inhibition and in strongly-coupled networks. To explain these observations, we constructed a model of the L4 circuit, with connectivity constrained by in vitro measurements. The model explores the various synaptic conductance strengths for which L4 FS neurons actively suppress baseline and movement-related activity in layer 4 excitatory neurons. Feedforward inhibition, in concert with recurrent intracortical circuitry, produces tactile suppression. Synaptic delays in feedforward inhibition allow transmission of temporally brief volleys of activity associated with touch. Our model provides a mechanistic explanation of a behavior-related computation implemented by the thalamocortical circuit
A finite element study of the influence of the osteotomy surface on the backward displacement during exophthalmia reduction
Exophthalmia is characterized by a protrusion of the eyeball. The most frequent surgery consists in an osteotomy of the orbit walls to increase the orbital volume and to retrieve a normal eye position. Only a few clinical obser-vations have estimated the relationship between the eyeball backward dis-placement and the decompressed fat tissue volume. This paper presents a method to determine the relationship between the eyeball backward displace-ment and the osteotomy surface made by the surgeon, in order to improve ex-ophthalmia reduction planning. A poroelastic finite element model involving morphology, material properties of orbital components, and surgical gesture is proposed to perform this study on 12 patients. As a result, the osteotomy sur-face seems to have a non-linear influence on the backward displacement. More-over, the FE model permits to give a first estimation of an average law linking those two parameters. This law may be helpful in a surgical planning frame-work
- âŠ