451 research outputs found

    Isolated human pulmonary artery structure and function pre‐ and post‐cardiopulmonary bypass surgery

    No full text
    Background: Pulmonary dysfunction is a known complication after cardiac surgery using cardiopulmonary bypass, ranging from subclinical functional changes to prolonged postoperative ventilation, acute lung injury, and acute respiratory distress syndrome. Whether human pulmonary arterial function is compromised is unknown. The aim of the present study was to compare the structure and function of isolated and cannulated human pulmonary arteries obtained from lung biopsies after the chest was opened (pre–cardiopulmonary bypass) to those obtained at the end of cardiopulmonary bypass (post–cardiopulmonary bypass) from patients undergoing coronary artery bypass graft surgery. Methods and Results: Pre‐ and post–cardiopulmonary bypass lung biopsies were received from 12 patients undergoing elective surgery. Intralobular small arteries were dissected, cannulated, pressurized, and imaged using confocal microscopy. Functionally, the thromboxane mimetic U46619 produced concentration‐dependent vasoconstriction in 100% and 75% of pre‐ and post–cardiopulmonary bypass arteries, respectively. The endothelium‐dependent agonist bradykinin stimulated vasodilation in 45% and 33% of arteries pre‐ and post–cardiopulmonary bypass, respectively. Structurally, in most arteries smooth muscle cells aligned circumferentially; live cell viability revealed that although 100% of smooth muscle and 90% of endothelial cells from pre–cardiopulmonary bypass biopsies had intact membranes and were considered viable, only 60% and 58%, respectively, were viable from post–cardiopulmonary bypass biopsies. Conclusions: We successfully investigated isolated pulmonary artery structure and function in fresh lung biopsies from patients undergoing heart surgery. Pulmonary artery contractile tone and endothelium‐dependent dilation were significantly reduced in post–cardiopulmonary bypass biopsies. The decreased functional responses were associated with reduced cell viability. Clinical Trial Registration: URL: http://www.isrctn.com/ISRCTN34428459. Unique identifier: ISRCTN 34428459.</p

    Quantification of Biomolecular Dynamics Inside Real and Synthetic Nuclear Pore Complexes Using Time-Resolved Atomic Force Microscopy

    Get PDF
    Over the past decades, atomic force microscopy (AFM) has emerged as an increasingly powerful tool to study the dynamics of biomolecules at nanometer length scales. However, the more stochastic the nature of such biomolecular dynamics, the harder it becomes to distinguish them from AFM measurement noise. Rapid, stochastic dynamics are inherent to biological systems comprising intrinsically disordered proteins. One role of such proteins is in the formation of the transport barrier of the nuclear pore complex (NPC): the selective gateway for macromolecular traffic entering or exiting the nucleus. Here, we use AFM to observe the dynamics of intrinsically disordered proteins from two systems: the transport barrier of native NPCs and the transport barrier of a mimetic NPC made using a DNA origami scaffold. Analyzing data recorded with 50-200 ms temporal resolution, we highlight the importance of drift correction and appropriate baseline measurements in such experiments. In addition, we describe an autocorrelation analysis to quantify time scales of observed dynamics and to assess their veracity-an analysis protocol that lends itself to the quantification of stochastic fluctuations in other biomolecular systems. The results reveal the surprisingly slow rate of stochastic, collective transitions inside mimetic NPCs, highlighting the importance of FG-nup cohesive interactions

    Leaf Morphology, Taxonomy and Geometric Morphometrics: A Simplified Protocol for Beginners

    Get PDF
    Taxonomy relies greatly on morphology to discriminate groups. Computerized geometric morphometric methods for quantitative shape analysis measure, test and visualize differences in form in a highly effective, reproducible, accurate and statistically powerful way. Plant leaves are commonly used in taxonomic analyses and are particularly suitable to landmark based geometric morphometrics. However, botanists do not yet seem to have taken advantage of this set of methods in their studies as much as zoologists have done. Using free software and an example dataset from two geographical populations of sessile oak leaves, we describe in detailed but simple terms how to: a) compute size and shape variables using Procrustes methods; b) test measurement error and the main levels of variation (population and trees) using a hierachical design; c) estimate the accuracy of group discrimination; d) repeat this estimate after controlling for the effect of size differences on shape (i.e., allometry). Measurement error was completely negligible; individual variation in leaf morphology was large and differences between trees were generally bigger than within trees; differences between the two geographic populations were small in both size and shape; despite a weak allometric trend, controlling for the effect of size on shape slighly increased discrimination accuracy. Procrustes based methods for the analysis of landmarks were highly efficient in measuring the hierarchical structure of differences in leaves and in revealing very small-scale variation. In taxonomy and many other fields of botany and biology, the application of geometric morphometrics contributes to increase scientific rigour in the description of important aspects of the phenotypic dimension of biodiversity. Easy to follow but detailed step by step example studies can promote a more extensive use of these numerical methods, as they provide an introduction to the discipline which, for many biologists, is less intimidating than the often inaccessible specialistic literature

    Visceral Leishmaniasis Relapse in Southern Sudan (1999–2007): A Retrospective Study of Risk Factors and Trends

    Get PDF
    Visceral leishmaniasis (kala-azar) caused by Leishmania donovani is spread from person to person by Phlebotomus sandflies. Major epidemics of visceral leishmaniasis have occurred in Southern Sudan during the 20th century. The worst of these killed 100,000 people in the western Upper Nile area of Southern Sudan from 1984–1994, a loss of one-third of the population. MĂ©decins Sans FrontiĂšres has treated 40,000 kala-azar patients in Southern Sudan since the late 1980's. In this study we used routinely collected clinical data to investigate why some patients relapse after treatment. We found that patients with severely enlarged spleens (splenomegaly) are more likely to relapse. Patients treated for 17 days with a combination of two drugs (sodium stibogluconate and paromomycin) were more likely to relapse (but less likely to die) than patients treated for 30 days with a single drug (sodium stibogluconate). However, the transition from sodium stibogluconate to the sodium stibogluconate/paromomycin combination as standard treatment between 2001–2003 has not led to a significant increase in visceral leishmaniasis relapse

    The effect of the timing of exposure to Campylobacter jejuni on the gut microbiome and inflammatory responses of broiler chickens

    Get PDF
    Background Campylobacters are an unwelcome member of the poultry gut microbiota in terms of food safety. The objective of this study was to compare the microbiota, inflammatory responses, and zootechnical parameters of broiler chickens not exposed to Campylobacter jejuni with those exposed either early at 6 days old or at the age commercial broiler chicken flocks are frequently observed to become colonized at 20 days old. Results Birds infected with Campylobacter at 20 days became cecal colonized within 2 days of exposure, whereas birds infected at 6 days of age did not show complete colonization of the sample cohort until 9 days post-infection. All birds sampled thereafter were colonized until the end of the study at 35 days (mean 6.1 log10 CFU per g of cecal contents). The cecal microbiota of birds infected with Campylobacter were significantly different to age-matched non-infected controls at 2 days post-infection but generally the composition of the cecal microbiota were more affected by bird age as the time post infection increased. The effects of Campylobacter colonization on the cecal microbiota were associated with reductions in the relative abundance of OTUs within the taxonomic family Lactobacillaceae and the Clostridium cluster XIVa. Specific members of the Lachnospiraceae and Ruminococcaceae families exhibit transient shifts in microbial community populations dependent upon the age at which the birds become colonized by C. jejuni. Analysis of ileal and cecal chemokine/cytokine gene expression revealed increases in IL-6, IL-17A and Il-17F consistent with a Th17 response but the persistence of the response was dependent on the stage/time of C. jejuni colonization that coincide with significant reductions in the abundance of Clostridium cluster XIVa. Conclusions This study combines microbiome data, cytokine/chemokine gene expression with intestinal villus and crypt measurements to compare chickens colonized early or late in the rearing cycle to provide insights into the process and outcomes of Campylobacter colonization. Early colonization results in a transient growth rate reduction and pro-inflammatory response but persistent modification of the cecal microbiota. Late colonization produces pro-inflammatory responses with changes in the cecal microbiota that will endure in market ready chickens

    The Anti-Inflammatory and Antibacterial Basis of Human Omental Defense: Selective Expression of Cytokines and Antimicrobial Peptides

    Get PDF
    BACKGROUND: The wound healing properties of the human omentum are well known and have extensively been exploited clinically. However, the underlying mechanisms of these effects are not well understood. We hypothesize that the omentum tissue promotes wound healing via modulation of anti-inflammatory pathways, and because the omentum is rich in adipocytes, the adipocytes may modulate the anti-inflammatory response. Factors released by human omentum may affect healing, inflammation and immune defense. METHODOLOGY: Six human omentum tissues (non obese, free from malignancy, and any other systemic disorder) were obtained during diagnostic laparoscopies having a negative outcome. Healthy oral mucosa (obtained from routine oral biopsies) was used as control. Cultured adipocytes derived from human omentum were exposed to lipopolysaccharide (LPS) (1-50 ng/mL) for 12-72 hours to identify the non-cytotoxic doses. Levels of expression (mRNA and protein) were carried out for genes associated with pro- and anti-inflammatory cytokine responses and antibacterial/antimicrobial activity using qRT-PCR, western blotting, and cell-based ELISA assays. RESULTS: The study shows significant higher levels of expression (mRNA and protein) of several specific cytokines, and antibacterial peptides in the omentum tissues when compared to oral sub-mucosal tissues. In the validation studies, primary cultures of adipocytes, derived from human omentum were exposed to LPS (5 and 10 ng/mL) for 24 and 48 h. The altered expressions were more pronounced in cultured adipocytes cells when exposed to LPS as compared to the omentum tissue. CONCLUSIONS/SIGNIFICANCE: Perhaps, this is the first report that provides evidence of expressional changes in pro- and anti-inflammatory cytokines and antibacterial peptides in the normal human omentum tissue as well as adipocytes cultured from this tissue. The study provides new insights on the molecular and cellular mechanisms of healing and defense by the omentum, and suggests the potential applicability of cultured adipocytes derived from the omentum for future therapeutic applications

    Similarities and Differences in Chinese and Caucasian Adults' Use of Facial Cues for Trustworthiness Judgments

    Get PDF
    All cultural groups in the world place paramount value on interpersonal trust. Existing research suggests that although accurate judgments of another's trustworthiness require extensive interactions with the person, we often make trustworthiness judgments based on facial cues on the first encounter. However, little is known about what facial cues are used for such judgments and what the bases are on which individuals make their trustworthiness judgments.In the present study, we tested the hypothesis that individuals may use facial attractiveness cues as a “shortcut” for judging another's trustworthiness due to the lack of other more informative and in-depth information about trustworthiness. Using data-driven statistical models of 3D Caucasian faces, we compared facial cues used for judging the trustworthiness of Caucasian faces by Caucasian participants who were highly experienced with Caucasian faces, and the facial cues used by Chinese participants who were unfamiliar with Caucasian faces. We found that Chinese and Caucasian participants used similar facial cues to judge trustworthiness. Also, both Chinese and Caucasian participants used almost identical facial cues for judging trustworthiness and attractiveness.The results suggest that without opportunities to interact with another person extensively, we use the less racially specific and more universal attractiveness cues as a “shortcut” for trustworthiness judgments

    Modulatory Communication Signal Performance Is Associated with a Distinct Neurogenomic State in Honey Bees

    Get PDF
    Studies of animal communication systems have revealed that the perception of a salient signal can cause large-scale changes in brain gene expression, but little is known about how communication affects the neurogenomic state of the sender. We explored this issue by studying honey bees that produce a vibratory modulatory signal. We chose this system because it represents an extreme case of animal communication; some bees perform this behavior intensively, effectively acting as communication specialists. We show large differences in patterns of brain gene expression between individuals producing vibratory signal as compared with carefully matched non-senders. Some of the differentially regulated genes have previously been implicated in the performance of other motor activities, including courtship behavior in Drosophila melanogaster and Parkinson's Disease in humans. Our results demonstrate for the first time a neurogenomic brain state associated with sending a communication signal and provide suggestive glimpses of molecular roots for motor control

    Impact of the Topology of Global Macroeconomic Network on the Spreading of Economic Crises

    Get PDF
    Throughout economic history, the global economy has experienced recurring crises. The persistent recurrence of such economic crises calls for an understanding of their generic features rather than treating them as singular events. The global economic system is a highly complex system and can best be viewed in terms of a network of interacting macroeconomic agents. In this regard, from the perspective of collective network dynamics, here we explore how the topology of the global macroeconomic network affects the patterns of spreading of economic crises. Using a simple toy model of crisis spreading, we demonstrate that an individual country's role in crisis spreading is not only dependent on its gross macroeconomic capacities, but also on its local and global connectivity profile in the context of the world economic network. We find that on one hand clustering of weak links at the regional scale can significantly aggravate the spread of crises, but on the other hand the current network structure at the global scale harbors higher tolerance of extreme crises compared to more “globalized” random networks. These results suggest that there can be a potential hidden cost in the ongoing globalization movement towards establishing less-constrained, trans-regional economic links between countries, by increasing vulnerability of the global economic system to extreme crises
    • 

    corecore