11 research outputs found

    Streptozotocin-induced diabetes in the rat is associated with changes in vaginal hemodynamics, morphology and biochemical markers

    Get PDF
    BACKGROUND: Diabetes is associated with declining sexual function in women. However, the effects of diabetes on genital tissue structure, innervation and function remains poorly characterized. In control and streptozotocin-treated female rats, we investigated the effects of diabetes on vaginal blood flow, tissue morphology, and expression of arginase I, endothelial nitric oxide synthase (eNOS) and cGMP-dependent protein kinase (PKG), key enzymes that regulate smooth muscle relaxation. We further related these changes with estrogen receptor alpha (ERα) and androgen receptor (AR) expression. RESULTS: In addition to significantly elevated blood glucose levels, diabetic rats had decreased mean body weight, lower levels of plasma estradiol, and higher plasma testosterone concentration, compared to age-matched controls. Eight weeks after administration of buffer (control) or 65 mg/kg of streptozotocin (diabetic), the vaginal blood flow response to pelvic nerve stimulation was significantly reduced in diabetic rats. Histological examination of vaginal tissue from diabetic animals showed reduced epithelial thickness and atrophy of the muscularis layer. Diabetic animals also had reduced vaginal levels of eNOS and arginase I, but elevated levels of PKG, as assessed by Western blot analyses. These alterations were accompanied by a reduction in both ERα and AR in nuclear extracts of vaginal tissue from diabetic animals. CONCLUSION: In ovariectomized (estrogen deficient) animals, previous reports from our lab and others have documented changes in blood flow, tissue structure, ERα, arginase I and eNOS that parallel those observed in diabetic rats. We hypothesize that diabetes may lead to multiple disruptions in sex steroid hormone synthesis, metabolism and action. These pathological events may cause dramatic changes in tissue structure and key enzymes that regulate cell growth and smooth muscle contractility, ultimately affecting the genital response during sexual arousal

    Structure and cohesive energy of dipolar helices

    No full text
    International audienceThis paper deals with the investigation of cohesive energy in dipolar helices made up of hard spheres. Such tubular helical structures are ubiquitous objects in biological systems. We observe a complex dependence of cohesive energy on surface packing fraction and dipole moment distribution. As far as single helices are concerned, the lowest cohesive energy is achieved at the highest surface packing fraction. Besides, a striking non-monotonic behavior is reported for the cohesive energy as a function of the surface packing fraction. For multiple helices, we discover a new phase, exhibiting markedly higher cohesive energy. This phase is referred to as ZZ tube consisting of stacked crown rings (reminiscent of a pile of zig-zag rings), resulting in a local triangular arrangement with densely packed filaments parallel to the tube axis

    Influence of Three Different Surgical Techniques on Microscopic Damage of Saphenous Vein Grafts—A Randomized Study

    No full text
    Background and Objectives: The saphenous vein is one of the most common used grafts (SVG) for surgical revascularization. The mechanism of the SVGs occlusion is still unknown. Surgical preparation techniques have an important role in the early and late graft occlusion. Our study analyzed the influence of the three different surgical techniques on the histological and immunohistochemical characteristics of the vein grafts. Methods: Between June 2019 and December 2020, 83 patients who underwent surgical revascularization were prospectively randomly assigned to one of the three groups, according to saphenous vein graft harvesting (conventional (CVH), no-touch (NT) and endoscopic (EVH)) technique. The vein graft samples were sent on the histological (hematoxylin-eosin staining) and immunohistochemical (CD31, Factor VIII, Caveolin and eNOS) examinations. Results: The CVH, NT, and EVH groups included 27 patients (mean age 67.66 ± 5.6), 31 patients (mean age 66.5 ± 7.4) and 25 patients (mean age 66 ± 5.5), respectively. Hematoxylin-eosin staining revealed a lower grade of microstructural vein damage in the NT group (2, IQR 1-2) in comparison with CVH and EVH (3, IQR 2-4), (4, IQR 2-4) respectively (p p = 0.02, FVIII, p p = 0.001, and eNOS, p = 0.003). Conclusion: The best preservation of the structural vein integrity was in the NT group, while the lowest rate of leg wound complication was in the EVH group. These facts increase the interest in developing and implementing the endoscopic no-touch technique

    The ultimate dataflow for ultimate supercomputers-on-a-chip, for scientific computing, geo physics, complex mathematics, and information processing

    No full text
    This paper introduces a conceptual 100BillionTransistor (100BT) SuperComputers-on-a-Chip consisting of N big multi-core processors, 1000N small many-core processors, and two hardware accelerators - an ASIC TPU-like fixed-structure systolic array accelerator and a FPGA based flexible-structure re-programmable accelerator for bandwidth-bound and latency-critical Machine Learning applications respectively. The proposed SuperComputers-on-a-chip concept requires interfaces to specific external accelerators based on Quantum, Optical, Molecular, and Biological paradigms (programmable using EnergyFlow programming models - Energy Flow also representing a concept introduced in this paper) but these issues are outside the scope of this article. Keywords - Accelerators, Big Data, ControlFlow, DataFlow, ManyCore, Machine Learning, MultiCore, Systolic Array.Peer ReviewedPostprint (published version
    corecore