4 research outputs found

    Electric Cell-Substrate Impedance Sensing of Cellular Effects under Hypoxic Conditions and Carbonic Anhydrase Inhibition

    Get PDF
    Tumor hypoxia provides a dynamic environment for the cancer cells to thrive and metastasize. Evaluation of cell growth, cell-cell, and cell surface interactions in hypoxic conditions is therefore highly needed in the establishment of treatment options. Electric cell-substrate impedance sensing (ECIS) has been traditionally used in the evaluation of cellular platforms as a real-time, label-free impedance-based method to study the activities of cells grown in tissue cultures, but its application for hypoxic environments is seldom reported. We present real-time evaluation of hypoxia-induced bioeffects with a focus on hypoxic pH regulation of tumor environment. To this end, multiparametric real-time bioanalytical platform using electrical impedance spectroscopy (EIS) and human colon cancer HT-29 cells is advanced. A time series of EIS data enables monitoring with high temporal resolution the alterations occurring within the cell layer, especially at the cell-substrate level. We reveal the dynamic changes of cellular processes during hypoxic conditions and in response to application of acetazolamide (AZA), a carbonic anhydrase inhibitor. Optical evaluation and pH assessment complemented the electrical analysis towards establishing a pattern of cellular changes. The proposed bioanalytical platform indicates wide applicability towards evaluation of bioeffects of hypoxia at cellular level

    Electrochemical push-pull probe: from scanning electrochemical microscopy (SECM) to multimodal altering of cell microenvironment

    Get PDF
    To understand biological processes at the cellular level, a general approach is to alter the cells’ environment and to study their chemical responses. Herein, we present the implementation of an electrochemical push-pull probe, which combines a microfluidic system with a microelectrode, as a tool for locally altering the microenvironment of few adherent living cells by working in two different perturbation modes, namely electrochemical (i.e. electrochemical generation of a chemical effector compound) and microfluidic (i.e. infusion of a chemical effector compound from the pushing microchannel, while aspirating it through the pulling channel thereby focusing the flow between the channels). The effect of several parameters such as flow rate, working distance and probe inclination angle on the affected area of adherently growing cells was investigated both theoretically and experimentally. As a proof of concept, localized fluorescent labeling and pH changes were purposely introduced to validate the probe as a tool for studying adherent cancer cells through the control over the chemical composition of the extracellular space with high spatiotemporal resolution. A very good agreement between experimental and simulated results showed for instance, that the electrochemical perturbation mode enables to affect precisely only few living cells localized in a high-density cell culture

    Quantitative assessment of specific carbonic anhydrase inhibitors effect on hypoxic cells using electrical impedance assays

    No full text
    <p>Carbonic anhydrase IX (CA IX) is an important orchestrator of hypoxic tumour environment, associated with tumour progression, high incidence of metastasis and poor response to therapy. Due to its tumour specificity and involvement in associated pathological processes: tumourigenesis, angiogenesis, inhibiting CA IX enzymatic activity has become a valid therapeutic option. Dynamic cell-based biosensing platforms can complement cell-free and end-point analyses and supports the process of design and selection of potent and selective inhibitors. In this context, we assess the effectiveness of recently emerged CA IX inhibitors (sulphonamides and sulphocoumarins) and their antitumour potential using an electrical impedance spectroscopy biosensing platform. The analysis allows discriminating between the inhibitory capacities of the compounds and their inhibition mechanisms. Microscopy and biochemical assays complemented the analysis and validated impedance findings establishing a powerful biosensing tool for the evaluation of carbonic anhydrase inhibitors potency, effective for the screening and design of anticancer pharmacological agents.</p
    corecore