3 research outputs found

    Differences in growth-economics of fast vs. slow growing grass species in response to temperature and nitrogen limitation individually, and in combination

    Get PDF
    Background Fast growing invasive alien species are highly efficient with little investment in their tissues. They often outcompete slower growing species with severe consequences for diversity and community composition. The plant economics trait-based approach provides a theoretical framework, allowing the classification of plants with different performance characteristics. However, in multifaceted background, this approach needs testing. The evaluation and prediction of plant performance outcomes in ecologically relevant settings is among the most pressing topics to understand and predict ecosystem functioning, especially in a quickly changing environment. Temperature and nutrient availability are major components of the global environmental change and this study examines the response of growth economic traits, photosynthesis and respiration to such changes for an invasive fast-growing (Bromus hordaceus) and a slow-growing perennial (Bromus erectus) grass species. Results The fully controlled growth chamber experiment simulated temperature-and changes in nitrogen availability individually and in combination. We therefore provide maximum control and monitoring of growth responses allowing general growth trait response patterns to be tested. Under optimal nitrogen availability the slow growing B. erectus was better able to handle the lower temperatures (7 degrees C) whilst both species had problems at higher temperatures (30 degrees C). Stresses produced by a combination of heat and nutrient availability were identified to be less limiting for the slow growing species but the combination of chilling with low nutrient availability was most detrimental to both species. Conclusions For the fast-growing invader B. hordeaceus a reduction of nitrogen availability in combination with a temperature increase, leads to limited growth performance in comparison to the slow-growing perennial species B.erectus and this may explain why nutrient-rich habitats often experience more invasion than resource-poor habitats

    Limits to photosynthesis: seasonal shifts in supply and demand for CO2 in Scots pine

    Get PDF
    Boreal forests undergo a strong seasonal photosynthetic cycle; however, the underlying processes remain incompletely characterized. Here, we present a novel analysis of the seasonal diffusional and biochemical limits to photosynthesis (A(net)) relative to temperature and light limitations in high-latitude mature Pinus sylvestris, including a high-resolution analysis of the seasonality of mesophyll conductance (g(m)) and its effect on the estimation of carboxylation capacity (VCmax). We used a custom-built gas-exchange system coupled to a carbon isotope analyser to obtain continuous measurements for the estimation of the relevant shoot gas-exchange parameters and quantified the biochemical and diffusional controls alongside the environmental controls over A(net). The seasonality of A(net) was strongly dependent on VCmax and the diffusional limitations. Stomatal limitation was low in spring and autumn but increased to 31% in June. By contrast, mesophyll limitation was nearly constant (19%). We found that VCmax limited A(net) in the spring, whereas daily temperatures and the gradual reduction of light availability limited A(net) in the autumn, despite relatively high VCmax. We describe for the first time the role of mesophyll conductance in connection with seasonal trends in net photosynthesis of P. sylvestris, revealing a strong coordination between g(m) and A(net), but not between g(m) and stomatal conductance

    Metatranscriptomics captures dynamic shifts in mycorrhizal coordination in boreal forests

    Get PDF
    Carbon storage and cycling in boreal forests—the largest terrestrial carbon store—ismoderated by complex interactions between trees and soil microorganisms. However,existing methods limit our ability to predict how changes in environmental conditionswill alter these associations and the essential ecosystem services they provide. To addressthis, we developed a metatranscriptomic approach to analyze the impact of nutrientenrichment on Norway sprucefine roots and the community structure, function, andtree–microbe coordination of over 350 root-associated fungal species. In response toaltered nutrient status, host trees redefined their relationship with the fungal commu-nity by reducing sugar efflux carriers and enhancing defense processes. This resulted ina profound restructuring of the fungal community and a collapse in functional coordi-nation between the tree and the dominant Basidiomycete species, and an increase infunctional coordination with versatile Ascomycete species. As such, there was a func-tional  shift  in  community  dominance  from  Basidiomycetes  species,  with  importantroles in enzymatically cycling recalcitrant carbon, to Ascomycete species that have mela-nized cell walls that are highly resistant to degradation. These changes were accompa-nied  by  prominent  shifts  in  transcriptional  coordination  between  over  60  predictedfungal effectors, with more than 5,000 Norway spruce transcripts, providing mechanis-tic insight into the complex molecular dialogue coordinating host trees and their fungalpartners. The host–microbe dynamics captured by this study functionally inform howthese complex and  sensitive biological  relationships may mediate  the carbon  storagepotential of boreal soils under changing nutrient conditions
    corecore