96 research outputs found

    A phase II study for metabolic in vivo response monitoring with sequential 18FDG-PET-CT during treatment with the EGFR-monoclonal-antibody cetuximab in metastatic colorectal cancer: the Heidelberg REMOTUX trial

    Get PDF
    BACKGROUND: The epidermal growth factor receptor monoclonal antibody cetuximab has proven activity in metastatic colorectal cancer. To date, the mechanisms of action are not completely understood. Especially the impact on tumor glucose metabolism, or tumor vascularization remains largely unclear. The understanding of mechanisms such as early changes in tumor metabolism is of clinical importance since there may be a substantial influence on choice and sequence of drug combinations. Early signals of response to cetuximab may prove useful to identify patients having a relevant clinical treatment benefit. The objective of this trial is to evaluate the predictive relevance of the relative change in (18 )F-Fluorodeoxyglucose tumor uptake for early clinical response during short-term single agent treatment with cetuximab. Early clinical response will be routinely measured according to the response evaluation criteria in solid tumors. Accompanying research includes cytokine immune monitoring and analysis of tumor proteins and tumor genes. METHODS/DESIGN: The REMOTUX trial is an investigator-initiated, prospective, open-label, single-arm, single-center early exploratory predictive study. The first (18 )F-FDG PET-CT is conducted at baseline followed by the run-in phase with cetuximab at days 1 and 8. At day 14, the second (18 )F-FDG PET-CT is performed. Subsequently, patients are treated according to the Folfiri-cetuximab regimen as an active and approved first-line regimen for metastatic colorectal carcinoma. At day 56, clinical response is evaluated with a CT-scan compared to the baseline analysis. Tracer uptake is assessed using standardized uptake values (SUVs). The main hypothesis to be tested in the primary analysis is whether or not the relative change in the SUV from baseline to day 14 has any predictive relevance for early clinical response determined at day 56. Patients are followed until death from any cause or until 24 months after the last patient has ended trial treatment. DISCUSSION: The aim of this trial is to evaluate metabolic changes in metastatic colorectal cancer during short-term single agent treatment with cetuximab and to analyse their potential of predicting early clinical response. This could be helpful to answer the question if early identification of patients not responding to cetuximab is possible. TRIAL REGISTRATION: ClinicalTrials.gov NCT200811021020; EudraCT 20090132792

    Sequential FDG-PET and induction chemotherapy in locally advanced adenocarcinoma of the Oesophago-gastric junction (AEG): The Heidelberg Imaging program in Cancer of the oesophago-gastric junction during Neoadjuvant treatment: HICON trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>18-Fluorodeoxyglucose-PET (<sup>18</sup>F-FDG-PET) can be used for early response assessment in patients with locally advanced adenocarcinomas of the oesophagogastric junction (AEG) undergoing neoadjuvant chemotherapy. It has been recently shown in the MUNICON trials that response-guided treatment algorithms based on early changes of the FDG tumor uptake detected by PET are feasible and that they can be implemented into clinical practice.</p> <p>Only 40%-50% of the patients respond metabolically to therapy. As metabolic non-response is known to be associated with a dismal prognosis, metabolic non-responders are increasingly treated with alternative neoadjuvant chemotherapies or chemoradiation in order to improve their clinical outcome. We plan to investigate whether PET can be used as response assessment during radiochemotherapy given as salvage treatment in early metabolic non-responders to standard chemotherapy.</p> <p>Methods/Design</p> <p>The HICON trial is a prospective, non-randomized, explorative imaging study evaluating the value of PET as a predictor of histopathological response in metabolic non-responders. Patients with resectable AEG type I and II according to Siewerts classification, staged cT3/4 and/or cN+ and cM0 by endoscopic ultrasound, spiral CT or MRI and FDG-PET are eligible. Tumors must be potentially R0 resectable and must have a sufficient FDG-baseline uptake. Only metabolic non-responders, showing a < 35% decrease of SUV two weeks after the start of neoadjuvant chemotherapy are eligible for the study and are taken to intensified taxane-based RCT (chemoradiotherapy (45 Gy) before surgery. <sup>18</sup>FDG-PET scans will be performed before ( = Baseline) and after 14 days of standard neoadjuvant therapy as well as after the first cycle of salvage docetaxel/cisplatin chemotherapy (PET 1) and at the end of radiochemotherapy (PET2). Tracer uptake will be assessed semiquantitatively using standardized uptake values (SUV). The percentage difference ΔSUV = 100 (SUV<sub>Baseline </sub>- SUV <sub>PET1</sub>)/SUV<sub>Baseline </sub>will be calculated and assessed as an early predictor of histopathological response. In a secondary analysis, the association between the difference SUV<sub>PET1 </sub>- SUV<sub>PET2 </sub>and histopathological response will be evaluated.</p> <p>Discussion</p> <p>The aim of this study is to investigate the potential of sequential <sup>18</sup>FDG-PET in predicting histopathological response in AEG tumors to salvage neoadjuvant radiochemotherapy in patients who do not show metabolic response to standard neoadjuvant chemotherapy.</p> <p>Trial Registration</p> <p>Clinical trial identifier <a href="http://www.clinicaltrials.gov/ct2/show/NCT01271322">NCT01271322</a></p

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead
    corecore