239 research outputs found

    The relation between photospheric supergranular flows and magnetic flux emergence

    Full text link
    A recent study carried out on high sensitivity SUNRISE/IMAX data has reported about the existence of areas of limited flux emergence in the quiet Sun. By exploiting an independent and longer (4 hours) data set acquired by HINODE/SOT, we further investigate these regions by analysing their spatial distribution and relation with the supergranular flow. Our findings, while confirming the presence of these calm areas, also show that the rate of emergence of small magnetic elements is largely suppressed at the locations where the divergence of the supergranular plasma flows is positive. This means that the dead calm areas previously reported in literature are not randomly distributed over the solar photosphere but they are linked to the supergranular cells themselves. These results are discussed in the framework of the recent literature.Comment: Accepted as A&A Lette

    The spectrum of kink-like oscillations of solar photospheric magnetic elements

    Get PDF
    Recently, the availability of new high-spatial and -temporal resolution observations of the solar photosphere has allowed the study of the oscillations in small magnetic elements. Small magnetic elements have been found to host a rich variety of oscillations detectable as intensity, longitudinal or transverse velocity fluctuations which have been interpreted as MHD waves. Small magnetic elements, at or below the current spatial resolution achieved by modern solar telescopes, are though to play a relevant role in the energy budget of the upper layers of the Sun's atmosphere, as they are found to cover a significant fraction of the solar photosphere. Unfortunately, the limited temporal length and/or cadence of the data sets, or the presence of seeing-induced effects have prevented, so far, the estimation of the power spectra of kink-like oscillations in small magnetic elements with good accuracy. Motivated by this, we studied kink-like oscillations in small magnetic elements, by exploiting very long duration and high-cadence data acquired with the Solar Optical Telescope on board the Hinode satellite. In this work we present the results of this analysis, by studying the power spectral density of kink-like oscillations on a statistical basis. We found that small magnetic elements exhibit a large number of spectral features in the range 1-12 mHz. More interestingly, most of these spectral features are not shared among magnetic elements but represent a unique signature of each magnetic element itself.Comment: A&A accepted for publication. 8 pages, 5 figure

    Non-linear propagation of kink waves to the solar chromosphere

    Full text link
    Small-scale magnetic field concentrations (magnetic elements) in the quiet Sun are believed to contribute to the energy budget of the upper layers of the Sun's atmosphere, as they are observed to support a large number of MHD modes. In recent years, kink waves in magnetic elements were observed at different heights in the solar atmosphere, from the photosphere to the corona. However, the propagation of these waves has not been fully evaluated. Our aim is to investigate the propagation of kink waves in small magnetic elements in the solar atmosphere. We analysed spectropolarimetric data of high-quality and long duration of a photospheric quiet Sun region observed near the disk center with the spectropolarimeter CRISP at the Swedish Solar Telescope (SST), and complemented by simultaneous and co-spatial broad-band chromospheric observations of the same region. Our findings reveal a clear upward propagation of kink waves with frequency above  2.6~2.6 mHz. Moreover, the signature of a non-linear propagation process is also observed. By comparing photospheric to chromospheric power spectra, no signature of an energy dissipation is found at least at the atmospheric heights at which the data analysed originate. This implies that most of the energy carried by the kink waves (within the frequency range under study <17< 17 mHz) flows to upper layers in the Sun's atmosphere.Comment: A&A accepte

    Multiple field-of-view MCAO for a Large Solar Telescope: LOST simulations

    Full text link
    In the framework of a 4m class Solar Telescope we studied the performance of the MCAO using the LOST simulation package. In particular, in this work we focus on two different methods to reduce the time delay error which is particularly critical in solar adaptive optics: a) the optimization of the wavefront reconstruction by reordering the modal base on the basis of the Mutual Information and b) the possibility of forecasting the wavefront correction through different approaches. We evaluate these techniques underlining pros and cons of their usage in different control conditions by analyzing the results of the simulations and make some preliminary tests on real data.Comment: 10 pages, 5 figures to be published in Adaptive Optics Systems II (Proceedings Volume) Proceedings of SPI

    Observational evidence for buffeting induced kink waves in solar magnetic elements

    Full text link
    The role of diffuse photospheric magnetic elements in the energy budget of the upper layers of the Sun's atmosphere has been the recent subject of many studies. This was made possible by the availability of high temporal and spatial resolution observations of the solar photosphere, allowing large numbers of magnetic elements to be tracked to study their dynamics. In this work we exploit a long temporal series of seeing-free magnetograms of the solar photosphere to study the effect of the turbulent convection in the excitation of kink oscillations in magnetic elements. We make use of the empirical mode decomposition technique (EMD) in order to study the transverse oscillations of several magnetic flux tubes. This technique permits the analysis of non-stationary time series like those associated to the horizontal velocities of these flux tubes which are continuously advected and dispersed by granular flows. Our primary findings reveal the excitation of low frequency modes of kink oscillations, which are sub-harmonics of a fundamental mode with a 7.6±0.27.6 \pm 0.2 minute periodicity. These results constitute a strong case for observational proof of the excitation of kink waves by the buffeting of the convection cells in the solar photosphere, and are discussed in light of their possible role in the energy budget of the upper Sun's atmosphere.Comment: A&A accepte

    SFADI: the Speckle-Free Angular Differential Imaging method

    Get PDF
    We present a new processing technique aimed at significantly improving the angular differential imaging method (ADI) in the context of high-contrast imaging of faint objects nearby bright stars in observations obtained with extreme adaptive optics (EXAO) systems. This technique, named "SFADI" for "Speckle-Free ADI", allows to improve the achievable contrast by means of speckles identification and suppression. This is possible in very high cadence data, which freeze the atmospheric evolution. Here we present simulations in which synthetic planets are injected into a real millisecond frame rate sequence, acquired at the LBT telescope at visible wavelength, and show that this technique can deliver low and uniform background, allowing unambiguous detection of 10−510^{-5} contrast planets, from 100100 to 300300 mas separations, under poor and highly variable seeing conditions (0.80.8 to 1.51.5 arcsec FWHM) and in only 2020 min of acquisition. A comparison with a standard ADI approach shows that the contrast limit is improved by a factor of 55. We extensively discuss the SFADI dependence on the various parameters like speckle identification threshold, frame integration time, and number of frames, as well as its ability to provide high-contrast imaging for extended sources, and also to work with fast acquisitions.Comment: Accepted for publication in Ap

    High-frequency Oscillations in Small Magnetic Elements Observed with Sunrise/SuFI

    Full text link
    We characterize waves in small magnetic elements and investigate their propagation in the lower solar atmosphere from observations at high spatial and temporal resolution. We use the wavelet transform to analyze oscillations of both horizontal displacement and intensity in magnetic bright points found in the 300 nm and the Ca II H 396.8 nm passbands of the filter imager on board the Sunrise balloon-borne solar observatory. Phase differences between the oscillations at the two atmospheric layers corresponding to the two passbands reveal upward propagating waves at high frequencies (up to 30 mHz). Weak signatures of standing as well as downward propagating waves are also obtained. Both compressible and incompressible (kink) waves are found in the small-scale magnetic features. The two types of waves have different, though overlapping, period distributions. Two independent estimates give a height difference of approximately 450+-100 km between the two atmospheric layers sampled by the employed spectral bands. This value, together with the determined short travel times of the transverse and longitudinal waves provide us with phase speeds of 29+-2 km/s and 31+-2 km/s, respectively. We speculate that these phase speeds may not reflect the true propagation speeds of the waves. Thus, effects such as the refraction of fast longitudinal waves may contribute to an overestimate of the phase speed.Comment: 14 pages, 7 figure

    Three-minute wave enhancement in the solar photosphere

    Get PDF
    It is a well-known result that the power of five-minute oscillations is progressively reduced by magnetic fields in the solar photosphere. Many authors have pointed out that this fact could be due to a complex interaction of many processes: opacity effects, MHD mode conversion and intrinsic reduced acoustic emissivity in strong magnetic fields. While five-minute oscillations are the dominant component in the photosphere, it has been shown that chromospheric heights are in turn dominated by three-minute oscillations. Two main theories have been proposed to explain their presence based upon resonance filtering in the atmospheric cavity and non linear interactions. In this work we show, through the analysis of IBIS observations of a solar pore in the photospheric Fe I 617.3 nm line, that three-minute waves are already present at the height of formation of this line and that their amplitude depends on the magnetic field strength and is strictly confined in the umbral region.Comment: A&A accepte
    • …
    corecore