45 research outputs found

    Optimal Aircraft Control Surface Layouts for Maneuver and Gust Load Alleviation

    Get PDF
    The goal of this work is to conduct aeroservoelastic optimization of a high aspect ratio transport wingbox with distributed control surfaces along the trailing edge. The control surfaces are utilized for both quasi-steady maneuver load alleviation (MLA) and unsteady gust load alleviation (GLA). The optimizer dictates the sizing details of the wingbox, the steady and unsteady control surface rotations, and also the control surface layout. Layout design variables specifically dictate which control surfaces to retain, and which to remove. The objective function is to minimize the sum of the actuator weight and the structural weight, with several imposed constraints related to structural failure and actuator saturation. The optimizers preferences with regards to control surface layout for MLA are in strong contrast to GLA-driven designs. The GLA-driven design space also suffers from local minima not evident in the MLA space

    Gradient-Based Aeroservoelastic Optimization with Static Output Feedback

    Get PDF
    Static output feedback considers an optimal low-order feedback matrix which directly connects the sensors to the control inputs. This work demonstrates the numerical techniques needed to compute the analytical gradient of the optimal feedback matrix with respect to design variables, which may then be used for gradient-based optimization. The derivatives are demonstrated for aeroservoelastic optimization under a series of closed- loop gust load alleviation constraints, considering a continuous stochastic gust load applied to a transport vehicle configuration, among other design constraints such as utter and maneuver loads. The optimal trade-o s between passive load alleviation and active load alleviation for static output feedback are compared with those from full-state feedback, which may be considered an upper-bound for effective sensor-based control

    Sizing and Topology Design of an Aeroelastic Wingbox Under Uncertainty

    Get PDF
    The goals of this work are to use a nested optimizer to conduct simultaneous sizing (inner level) and topology (outer level) design of a wingbox, considering uncertainties in the safety factors used to define the aeroelastic constraints. These uncertainties, propagated via sampling-driven polynomial chaos, are explicitly introduced at the inner level of the method, during gradient-based sizing optimization, resulting in a stochastic optimal sizing distribution. Measures of robustness in the total structural mass are then passed to the outer level, where a global optimizer evolves the topology parameters. The results demonstrate design choices needed to improve robustness in the face of uncertain safety factors, and the various physical mechanisms driving this process

    Optimization of an Aeroservoelastic Wing with Distributed Multiple Control Surfaces

    Get PDF
    This paper considers the aeroelastic optimization of a subsonic transport wingbox under a variety of static and dynamic aeroelastic constraints. Three types of design variables are utilized: structural variables (skin thickness, stiffener details), the quasi-steady deflection scheduling of a series of control surfaces distributed along the trailing edge for maneuver load alleviation and trim attainment, and the design details of an LQR controller, which commands oscillatory hinge moments into those same control surfaces. Optimization problems are solved where a closed loop flutter constraint is forced to satisfy the required flight margin, and mass reduction benefits are realized by relaxing the open loop flutter requirements

    Optimal Control Surface Layout for an Aeroservoelastic Wingbox

    Get PDF
    This paper demonstrates a technique for locating the optimal control surface layout of an aeroservoelastic Common Research Model wingbox, in the context of maneuver load alleviation and active utter suppression. The combinatorial actuator layout design is solved using ideas borrowed from topology optimization, where the effectiveness of a given control surface is tied to a layout design variable, which varies from zero (the actuator is removed) to one (the actuator is retained). These layout design variables are optimized concurrently with a large number of structural wingbox sizing variables and control surface actuation variables in order to minimize the sum of structural mass and actuator mass. The results demonstrate interdependencies between structural sizing patterns and optimal control surface layouts for both static and dynamic aeroelastic physics

    Aeroelastic Wingbox Stiffener Topology Optimization

    Get PDF
    This work considers an aeroelastic wingbox model seeded with run-out blade stiffeners along the skins. Topology optimization is conducted within the shell webs of the stiffeners, in order to add cutouts and holes for mass reduction. This optimization is done with a global-local approach in order to moderate the computational cost: aeroelastic loads are computed at the wing-level, but the topology and sizing optimization is conducted at the panel-level. Each panel is optimized separately under stress, buckling, and adjacency constraints, and periodically reassembled to update the trimmed aeroelastic loads. The resulting topology is baselined against a design with standard full-depth solid stiffener blades, and found to weigh 7.43% less

    Aeroservoelastic Optimization under Stochastic Gust Constraints

    Get PDF
    This work considers the aeroservoelastic optimization of a highly flexible transport aircraft wingbox with several control surfaces distributed along the trailing edge. The steady deflections of the control surfaces are designed to alleviate static maneuver loads, while the unsteady deflections are designed to alleviate stochastic continuous gust disturbances. Spatially-detailed unsteady stochastic stress and panel buckling constraints are formulated via modal acceleration, and by methods to locate the most-probable failure point along an equal-probability hypersurface. For the case considered here, it is found that the inclusion of such gust constraints during optimization presents a sizable structural mass penalty. In some cases, this mass penalty can be completely recovered with controlled gust load alleviation

    Performance Enhancement of the Flexible Transonic Truss-Braced Wing Aircraft Using Variable-Camber Continuous Trailing-Edge Flaps

    Get PDF
    Aircraft designers are to a growing extent using vehicle flexibility to optimize performance with objectives such as gust load alleviation and drag minimization. More complex aerodynamically optimized configurations may also require dynamic loads and perhaps eventually flutter suppression. This paper considers an aerodynamically optimized truss-braced wing aircraft designed for a Mach 0.745 cruise. The variable camber continuous trailing edge flap concept with a feedback control system is used to enhance aeroelastic stability. A linearized reduced order aerodynamic model is developed from unsteady Reynolds averaged Navier-Stokes simulations. A static output feedback controller is developed from that model. Closed-loop simulations using the reduced order aerodynamic model show that the controller is effective in stabilizing the vehicle dynamics

    Aeroelastic Tailoring of Transport Aircraft Wings: State-of-the-Art and Potential Enabling Technologies

    Get PDF
    This paper provides a brief overview of the state-of-the-art for aeroelastic tailoring of subsonic transport aircraft and offers additional resources on related research efforts. Emphasis is placed on aircraft having straight or aft swept wings. The literature covers computational synthesis tools developed for aeroelastic tailoring and numerous design studies focused on discovering new methods for passive aeroelastic control. Several new structural and material technologies are presented as potential enablers of aeroelastic tailoring, including selectively reinforced materials, functionally graded materials, fiber tow steered composite laminates, and various nonconventional structural designs. In addition, smart materials and structures whose properties or configurations change in response to external stimuli are presented as potential active approaches to aeroelastic tailoring

    Optimal Topology of Aircraft Rib and Spar Structures Under Aeroelastic Loads

    Get PDF
    This work is funded by the Fixed Wing Project under NASA鈥檚 Fundamental Aeronautics Program.Peer reviewedPostprin
    corecore