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Static output feedback considers an optimal low-order feedback matrix which directly
connects the sensors to the control inputs. This work demonstrates the numerical tech-
niques needed to compute the analytical gradient of the optimal feedback matrix with
respect to design variables, which may then be used for gradient-based optimization. The
derivatives are demonstrated for aeroservoelastic optimization under a series of closed-
loop gust load alleviation constraints, considering a continuous stochastic gust load applied
to a transport vehicle configuration, among other design constraints such as flutter and
maneuver loads. The optimal trade-offs between passive load alleviation and active load
alleviation for static output feedback are compared with those from full-state feedback,
which may be considered an upper-bound for effective sensor-based control.

I. Introduction

Aeroservoelastic optimization can be posed as a coupled plant-controller optimization problem,1 where
structural sizing and planform shape design variables define the aircraft plant model, and are optimized in
tandem with control architectural details. The controller, typically exposed to the aircraft via trailing edge
articulated control surfaces, may be tasked with maneuver load alleviation (MLA), gust load alleviation
(GLA), and active flutter suppression (AFS), among other vehicle-level flight control system (FCS) uses.
Active performance improvements via control can alleviate the burden on the plant design variables (i.e.,
actively shed flight loads allow for reduced structural wing weight), and so the synergy between the two sets
of design variables (plant and controller) can be very strong.

Regarding control law design variables, early work in integrated aeroservoelastic optimization utilized pre-
assigned transfer functions, and optimized the numerator and denominator coefficients of these functions,2,3

though the resulting design space may be disjointed. More modern work utilizes optimal control, such as a
linear quadratic regulator (LQR), which facilitates multiple control inputs and outputs. In this paradigm,
considered in Refs. 4–8, the optimal feedback matrix is found which minimizes a performance function, J ,
given as a linear combination of time-averaged control cost and state cost. Design variables may then include
members of the control-weighting matrix and/or the state-weighting matrix.

LQR is numerically convenient, but its reliance on full-state feedback is unrealistic. A popular alternative
is the use of a Kalman filter to estimate the full state from a small number of sensors (i.e., linear quadratic
Gaussian, LQG); a second alternative is static output feedback (SOF), where an optimal feedback matrix
directly connects the available outputs (sensors) to the available inputs. There are drawbacks and advantages
to both approaches, as summarized in Ref. 9: LQG enjoys stabilization and robustness guarantees that SOF
does not, and the design equations are substantially simpler as well. Specifically, SOF feedback entails the
onerous computation of three nonlinearly coupled matrix equations (two of which are Lyapunov equations).
On the other hand, SOF controllers are much smaller (LQG controllers have the same order as the aircraft
plant), and the structure of the feedback matrix can be easily tuned as needed, which is particularly useful
for aircraft control.9

SOF control, and its role in integrated aeroservoelastic optimization, is the focus of this work. An
overall review of the method is given in Ref. 10, and aeroservoelastic analysis of SOF is demonstrated in
Refs. 11–13. Coupled aeroservoelastic optimization via SOF is rare, though an example is seen in Ref. 11. The
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authors of that work utilized gradient-based optimization, with derivatives estimated via finite differencing.
This approach severely limits the number of design variables that may be considered, and so the extension
demonstrated here is the computation of analytical sensitivities of the SOF controller, and the subsequent
gradient-based optimization of a detailed aeroservoelastic transport wing with several hundred structural
sizing and control law design variables, considering static maneuver loads, gust loads, and flutter.

II. Aeroservoelastic Analysis and Sensitivities

The linear time invariant system of the dynamic aeroservoelastic model considered here is written as:

ẋ = A · x + B · u + Bw · w (1)

where x is the state vector, u is the commanded input, and w is a zero-mean unit-intensity white noise.
Outputs of the system (sensor measurements) are given by:

y = C · x (2)

The goal is to find a feedback matrix of the form u = −K · y which minimizes the expected value of a
performance index:

J =
1

2
· E
[∫ ∞

0

(xT ·Q · x + uT ·R · u) · dt
]

(3)

where Q is the state weighting matrix, and R is the control weighting matrix. The equations needed to
compute K are not derived here, only the final set is reproduced from Ref. 9. Ignoring the white noise input
for the time-being, these equations are:

AT
c · P + P ·Ac + CT ·KT ·R ·K ·C + Q = 0 (4)

Ac · S + S ·AT
c + I = 0 (5)

K = R−1 ·BT · P · S ·CT ·
(
C · S ·CT

)−1
(6)

where Ac = A − B · K · C, the symmetric positive semidefinite matrix P is the solution to the Ricatti
equation, and S is a symmetric matrix of Lagrange multipliers. Eqs. 4-6 present a coupled set of nonlinear
matrix equations for the unknowns K, P , and S, the first two of which are Lyapunov equations.

A combination of algorithms is used in this work to solve the SOF equations. First, a gradient-based
optimization (with each member of K as a design variable) is used to minimize the performance index J
of Eq. 3, with the constraint that Ac must be stable. This algorithm pushes the solution into the correct
region, but is unable to efficiently drive the residual of Eq. 6 to machine-zero. As such, this first algorithm
is then followed, after a fixed number of iterations, by the well-known Moerder-Calise algorithm,14 which
uses a recurring Newton update to compute K. Care must be taken in this algorithm to limit the step size
to K, such that Ac remains stable: an unstable K will destabilize the algorithm.

Having computed the optimal feedback matrix, the closed-loop response of the aeroservoelastic system
to the input gust w is computed via another Lyapunov equation:

Ac ·X + X ·AT
c + Bw · U2

σ ·BT
w = 0 (7)

where X is the state covariance matrix, and Uσ is the design gust velocity.15 Gust-based performance
metrics, exposed to the aeroservoelastic optimizer in the form of design constraints, are then written as
g(X).

In order to conduct this optimization under a large number of design variables, gradient-based optimiza-
tion is required, with the gradients computed in an analytical manner. With design variables grouped into
the vector q, the derivatives of the gust metrics g are written as:

dg

dq
=

dg

dX
· dX
dq

(8)
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Ideally, analytical derivative computations will have a cost which scales nearly-independently of the number
of design variables in q: see for example, adjoint computations for linear and nonlinear algebraic systems of
equations, or eigenvalue derivatives.16 Derivatives of Lyapunov equations, on the other hand, scale poorly
with the number of design variables, as one additional Lyapunov equation must be solved per design variable
of interest.17 For example, the covariance derivative needed in Eq. 8 is computed as:

Ac ·
dX

dq
+

dX

dq
·AT

c +
dAc

dq
·X + X · dA

T
c

dq
= 0 (9)

where it has been assumed that Bw is not dependent upon the design variables. The closed-loop plant
derivatives are given as:

dAc

dq
=

dA

dq
− dB

dq
·K ·C −B · dK

dq
·C −B ·K · dC

dq
(10)

Eq. 10 requires the derivatives of the feedback matrix, which is the focus of this work. Just as the
derivative of a standard Lyapunov equation requires one additional Lyapunov equation per design variable,
the derivative of the SOF systems (Eqs. 4-6) analogously requires the solution of a coupled set of nonlinear
matrix equations, for each design variable. These three equations are:

AT
c · dP

dq
+

dP

dq
·Ac +

dAT
c

dq
· P + P · dA

T
c

dq
+

(
dCT

dq
·KT + CT · dK

T

dq

)
·R ·K ·C+

CT ·KT · dR
dq

·K ·C + CT ·KT ·R ·
(
dK

dq
·C + K · dC

dq

)
+

dQ

dq
= 0 (11)

Ac ·
dS

dq
+

dS

dq
·AT

c +
dAc

dq
· S + S · dA

T
c

dq
= 0 (12)

dK

dq
= R−1 ·

((
−dR

dq
·K ·C −R ·K · dC

dq

)
· S ·CT −R ·K ·C ·

(
dS

dq
·CT + S · dC

T

dq

)
+(

dBT

dq
· P + BT · dP

dq

)
· S ·CT + BT · P ·

(
dS

dq
·CT + S · dC

T

dq

))
·
(
C · S ·CT

)−1
(13)

Solution of Eqs. 11-13 yields the derivatives of P , S, and K with respect to q, the latter of which is needed
in Eq. 10, and is accomplished with the same linearized update algorithm (i.e., Moerder-Calise14) used for
the original SOF controller (Eqs. 4-6). Convergence of the derivative Eqs. 11-13 can be more aggressive,
however, since the Lyapunov matrix driver (Ac) is frozen in Eqs. 11 and 12, and so there is no worry that
overly-large step sizes will destabilize the system. This is in contrast with the original SOF equations, where
Ac is part of the solution process, and so care must be taken not to obtain an unstable closed-loop system.
Despite this, the overall cost of computing the derivative of K is very high, since these coupled nonlinear
matrix sensitivity equations must be solved for each design variable independently, though the independent
operations can be done in parallel.

III. Optimization Test Case

The demonstration case considered here is a metallic wingbox of the Common Research Model,18 a
generic swept-wing subsonic transport configuration with an aspect ratio of nine. The optimization desires
to identify the configuration with the lowest structural mass, which can still withstand the static maneuver
loads and gust loads (both with and without the assistance of twenty trailing edge control surfaces distributed
from root to tip) and also remain flutter-free. Detailed information regarding this optimization problem can
be found in Ref. 19; only cursory details are provided here. Three types of design variables are considered
by the gradient-based optimizer:

1. Structural sizing: the skin panels, ribs, and spar sections of the wingbox are discretized into design
patches with smeared stiffeners. The shell thickness, stiffener thickness, and stiffener height is optimized
separately for each design patch.
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2. Maneuver load alleviation: the optimizer dictates the static deflection of each control surface across
two closed-loop static aeroelastic maneuver loads (−1g and 2.5g). Two additional open-loop maneuver
loads are applied without the use of MLA as well, which the optimizer must satisfy passively using the
sizing variables alone.

3. Gust load alleviation: the members of the diagonal matrix R are utilized as design variables as well
(one per control surface), and used to generate a feedback matrix K (where Q is frozen throughout the
optimization, and the output term C is based on six accelerometers distributed throughout the wing).
This control architecture in turn dictates the closed-loop gust response. As with the static maneuver
loads, an open-loop gust load is applied as well, which the optimizer must satisfy passively using the
sizing variables alone.

Several categories of design constraints must be satisfied during the optimization process:

1. Static stresses: during each maneuver load (both open-loop, and closed-loop via MLA), the stresses of
each wingbox finite element must be within the failure envelope.

2. Static buckling: during each maneuver load, the buckling factor of each stiffened panel must be within
the failure envelope.

3. Flutter: the airplane must be free of instability up to 15% of the dive speed (i.e., the eigenvalues of A
must be in the left-half-plane).

4. Dynamic stresses: during the continuous gust load (both open-loop, and closed-loop via GLA), the
equal-probability stress hypersurface20 of each wingbox finite element must be within the failure enve-
lope.

5. Dynamic buckling: during the continuous gust load, the equal-probability buckling hypersurface of
each stiffened panel must be within the failure envelope.

6. Control surface RMS rate: during the closed-loop continuous gust, the RMS rate of each control surface
must be less than some acceptable rate limit.

Constraint-aggregation21 is used to reduce the number of constraints to an acceptable level, for each of these
categories.

The dynamic stress, buckling, and RMS rate constraints are examples of g from Eq. 8, which requires
derivatives with respect to q (sizing and control law variables, in this case: MLA variables are grouped within
q as well, but have no impact on the gust problem). The derivatives are computed via Eqs. 9-13, where the
plant A is a function of the sizing variables, B and C are assumed independent of design variables, and R is
in fact identical to the control law design variables (and so the pertinent R derivative is the identity matrix).
A modal analysis is used to define A, where the solution vector x contains the structural modal amplitudes
and their time derivatives, aerodynamic lag states via a rational function approximation, control surface
aerodynamic terms and their lag states, third-order actuator modeling terms, gust column aerodynamic lag
terms, and gust forming filter terms. More details are given in Ref. 19.

The effectiveness of the GLA controller is driven by the tension between the dynamic stress/buckling
constraints, and the control surface RMS rate constraints. If the allowable rotation rate is set to a high
limit, this RMS constraint becomes inactive, and the optimizer is easily able to find a combination of R
values which will satisfy the closed-loop gust-based stress and buckling constraints. On the other hand, if
the RMS limit is set to a low value (active constraint), this limits the ability of the optimizer to use active
control to entirely handle the stress and gust constraints; the optimizer is then forced to passively stiffen
the wing, resulting in an increase in structural mass (the objective function). For very-low RMS limits,
the controller is entirely incapacitated, and the closed-loop gust load effectively becomes an open-loop load
entirely satisfied with sizing design variables. The focus of this work is to trace out this optimal trade-off
curve between structural wingbox weight and RMS rate limits.

IV. Results

The aeroservoelastic optimization process here is defined by multiple types of design variables and con-
straints, and it is of interest to understand the reaction of the optimization system (namely, the increase or
decrease in the objective function, structural mass) when these variables and constraints are phased in or
out in an isolated manner. A comprehensive study along these lines is given in Ref. 19; the current work
is only interested in understanding the effect of introducing the gust constraints (stress, buckling, RMS
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rate). A baseline system is obtained if the system is optimized under static loads (with and without MLA)
and flutter. If an open-loop gust constraint (stress, buckling) is added, a structural mass penalty (where
structural mass is computed based on the volume of the finite element model) of 9.7% is incurred. As noted
above, closed-loop GLA control can be used to recover some of this penalty, depending on the location of
the imposed RMS constraint.

Prior to discussing these design-oriented issues, however, typical output feedback control results (and
their analytical sensitivities) are presented and verified. This is done for the baseline aeroservoelastic design
noted previously, where gust constraints have not been applied yet. Convergence of the static output feedback
process (Eqs. 4-6) is given in Fig. 1, in terms of the residual norm of Eq. 6, the least-stable eigenvalue (real
part) of the closed-loop system Ac, and each member of K. Both phases of the convergence are shown, as
noted above: the first minimizes J across the K parameter space; the second phase uses the Moerder-Calise
algorithm.14

Figure 1. Convergence of the static output feedback matrix.

J-minimization is conducted for 20 iterations, where the residual drops 5 orders-of-magnitude, but then
stalls. Moerder-Calise is then able to drop the residual by another 10 orders-of-magnitude, reaching machine-
zero after 150 iterations. This phasing of algorithms is generally useful due to the fact that Moerder-Calise
requires an initial stabilizing feedback matrix to converge,9 and the Ac-stability constraint applied during
the J-minimization process will ensure this requirement is met. This issue is not a concern in this work,
however, as the open-loop system (K = 0) is stable owing to the satisfaction of the flutter constraint, as
can be seen in the stable eigenvalue at iteration 0 in Fig. 1. The critical stability of Ac is largely set after
the first 20 iterations, though the actual values of K change substantially through iteration 50.

Next, the accuracy of the analytical derivatives computed via Eqs. 9-13 is verified, for the closed-loop
system that uses the feedback matrix of Fig. 1. As noted above, dynamic stresses are constrained during the
optimization, in the sense that the equal-probability stress hypersurface of each wingbox finite element must
be within the failure envelope during the continuous gust. These element-based constraints are aggregated
into a single value (to minimize the number of constraints), and the derivative of this final aggregated
constraint with respect to each member of the control input R, is shown in Fig. 2. The analytical derivatives
are compared with finite difference estimates, with generally good agreement. Identifying a good finite
difference step size is difficult in general due to competing problems with numerical round-off (small steps)
and nonlinear response (large steps), and is particularly problematic here due to the large volume of Lyapunov
equation calls. The preferred method of verifying analytical gradients, complex step perturbation,22 is not
possible here due to the inability of the Lyapunov solver to accept complex inputs.

Additional analytical derivatives are shown (without finite difference verification) in Fig. 3. The first
contour in the figure show the derivative of the same gust-based stress metric as in Fig. 2, but now with
respect to the structural sizing of each wingbox design patch (i.e., shell thickness). The second contour shows
a similar result for panel buckling. These two sensitivities are largely localized in nature: the magnitude of
the sizing derivatives are highest in the locations of the wingbox with the largest gust-induced loads (in the
upper and lower skins, at semispan locations between 2 · y/b of 0.6 and 0.75). The third contour in Fig. 3,
on the other hand, is the sizing derivative of the closed-loop control surface rotation rate RMS, where the
RMS value of each control surface has been aggregated into a single metric, as before.

This third contour plot is more representative of the coupled aeroservoelastic nature of the problem, as
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Figure 2. Derivatives of the gust-based stress metric with respect to the control inputs, R.

Figure 3. Derivatives with respect to structural wingbox sizing parameters.

structural sizing will impact the plant matrix A, which in turn helps shape the optimal SOF feedback matrix
K, and then finally the covariance of the response, X (which then defines the RMS of each control surface
rotation). Given these complex interdependencies, the distribution of sensitivity throughout the wingbox in
this third contour in Fig. 2 is spatially heterogeneous and nonintuitive. Certainly the phasing and spatial
distribution of each structural mode shape will impact the control effort needed for GLA, and this is reflected
in the large negative sensitivities in the rib webs: the engine is attached in this location, and the least-stable
aeroelastic mode for this configuration is an engine-driven torsional mode.19

Finally, the sensitivities shown above are utilized for a complete aeroservoelastic optimization. Starting
with the design noted above, which has a weight penalty of 9.7% and includes an open-loop gust constraint,
GLA is implemented along with the closed-loop gust constraints. Fig. 4 traces out the optimal structural
mass under changes in the allowable control surface rotation RMS rate. The structural mass penalty varies
from 9.7% (where the RMS limit is very small, effectively eliminating the impact of GLA) to 0.8% (where
the RMS limit is very large: GLA is then able to alleviate the gust-burden of the wingbox, and therefore
reduce structural weight). Most of the gust penalty is recovered in this latter extreme: a non-zero penalty
remains only because the system is still forced to satisfy an open-loop gust constraint, with GLA turned off.

The SOF controller in Fig. 4 is compared with an LQR controller based on full-state feedback (C = I).
The LQR control design and associated sensitivity equations are considerably simpler and less-expensive
relative to SOF,17 and the performance of LQR may be thought of as the best-achievable for a given plant
and control input. Given this, the structural mass of the aeroservoelastic system optimized with LQR is
consistently lower than that with SOF for a given RMS rate limit constraint: a more effective GLA controller
allows for more structural mass to be removed from the wingbox. The largest structural mass difference
between the two controllers is a 1.4% penalty, and the difference drops to zero in the limit of very-small
allowable RMS rate rotations: both controllers become equally defective under this constraint. The difference
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also disappears in the limit of very-large allowable RMS rate rotations, as both controllers have more than
enough design freedom to actively alleviate the gust loads.

Figure 4. Dependence of optimal structural mass on controller type and control surface rate limits.

V. Conclusions

This work outlines methods for considering static output feedback controllers during integrated gradient-
based aeroservoelastic optimization. Static output feedback has benefits relative to other optimal sensor-
based feedback algorithms, but suffers from high computational cost and algorithmic complexity. The
computational steps required to compute the analytical derivative of the output feedback matrix with respect
to design variables are demonstrated here, as are methods to use those derivatives to represent a closed-
loop gust-based design constraint. Optimal aeroservoelastic trends (namely, trade-offs between active and
passive load allevation) for static output feedback are compared with those from full-state feedback, where
the former has a moderately inferior wing structure and control authority layout, owing to the more-realistic
sensor-based representation.
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