21 research outputs found

    Quality Assessment Criteria and Their Role in the Development of a Successful Educational Project Proposal

    Get PDF
    The paper suggests an analysis of data concerning 306 educational project proposals submitted for European funding in 2013. Several fundamental questions regarding the role of the evaluation for achieving European ideas and goals when financing projects in education area are posed and answers have been provided. The hypothesis that the actual assessment confirms the objectives of the EU is discussed against the alternative that this assessment changes the focus of EU funding. Another natural question that finds an answer in the present work is “How to plan the preparation of the project proposal with a view to optimize its effectiveness and the expected results?” The data is analysed by the methods of histogram analysis, principal component analysis,cross-covariance, correlation and variation analysis, Hilbert’s transform, as well as graph’s theory techniques

    Way of banking development abroad : branches or subsidiaries

    Get PDF
    The purpose of the study is to show what kind of risks would have emerged for bank depositors if there are economical and political risks in a given country. For example, as is the case with the crisis in Greece, a threat or salvation for the banking organizational forms abroad exists regarding which type of bank development is more efficient, branches or subsidiaries. Respectively why do the big banks prefer to operate through branches and those which are focused on retail sales through subsidiaries? What impact could the political and economic risks have on the required reserves on the parent bank? Does the decision depend on the applied organizational form of the bank or on other reasons?peer-reviewe

    Fluorescent Composite Cotton Fabric Modified with Crosslinked Chitosan for Theranostic Applications

    No full text
    Developing multifunctional textile material for wound dressing is challenging due to the variety of wounds and their differing healing stages. Therefore, theranostics replaces the traditional approach to provide patient comfort and accelerated healing. In this study, we developed and compared three different materials. For this purpose, for the first time, chitosan was modified with 4-nitro-1,8-naphthalic anhydride in N,N-dimethylformamide (DMF) suspension, and subsequent nucleophilic substitution of the nitro group with N,N-dimethylamino group, whereby chitosan with a yellow color and fluorescence was obtained. Cotton fabric was impregnated successively with a citric acid solution and solution from chitosan and chitosan modified with 1,8-naphthalimide fluorophore (CN material). The same experimental protocol was applied for the second material, but indomethacin was added to the chitosan solution (CNI material). The third material was prepared similarly to the second but was immersed in an alginate solution as a last step (CNIA material). The obtained materials have been characterized by optical and scanning electron microscopy and thermal analysis (TG-DTA-DTG). Indomethacin release from composite materials and hydrogel swelling and erosion in phosphate buffer pH 7.4 at 37 °C was examined using gravimetric analysis, UV-vis absorption, and fluorescence spectroscopy. The antimicrobial activity of the cotton samples has been evaluated against B. cereus and P. aeruginosa as model bacterial strains. The analysis showed that CN material inhibited about 98.8% of the growth of P. aeruginosa and about 95.5% of the growth of B. cereus. Other composite materials combine antimicrobial properties with a sustained release of biologically active substances that can observed visually

    Textile Materials Modified with Stimuli-Responsive Drug Carrier for Skin Topical and Transdermal Delivery

    No full text
    Textile materials, as a suitable matrix for different active substances facilitating their gradual release, can have an important role in skin topical or transdermal therapy. Characterized by compositional and structural variety, those materials readily meet the requirements for applications in specific therapies. Aromatherapy, antimicrobial substances and painkillers, hormone therapy, psoriasis treatment, atopic dermatitis, melanoma, etc., are some of the areas where textiles can be used as carriers. There are versatile optional methods for loading the biologically active substances onto textile materials. The oldest ones are by exhaustion, spraying, and a pad-dry-cure method. Another widespread method is the microencapsulation. The modification of textile materials with stimuli-responsive polymers is a perspective route to obtaining new textiles of improved multifunctional properties and intelligent response. In recent years, research has focused on new structures such as dendrimers, polymer micelles, liposomes, polymer nanoparticles, and hydrogels. Numerous functional groups and the ability to encapsulate different substances define dendrimer molecules as promising carriers for drug delivery. Hydrogels are also high molecular hydrophilic structures that can be used to modify textile material. They absorb a large amount of water or biological fluids and can support the delivery of medicines. These characteristics correspond to one of the current trends in the development of materials used in transdermal therapy, namely production of intelligent materials, i.e., such that allow controlled concentration and time delivery of the active substance and simultaneous visualization of the process, which can only be achieved with appropriate and purposeful modification of the textile material

    Design of a Composite Based on Polyamide Fabric-Hydrogel-Zinc Oxide Particles to Act as Adsorbent and Photocatalyst

    No full text
    Surface-initiated photopolymerization has been run to synthesize a hydrogel with ZnO particles distributed uniformly along its structure, which has been loaded onto a polyamide fabric. Three samples have been obtained at different concentrations of zinc nitrate (10% (sample PA10); 20% (sample PA20) and 30% (sample PA30) of the weight of the fabric, respectively)) and subjected to gravimetric analysis, scanning electron microscopy and transmission electron microscopy. The effect of the adsorption parameters of the composite material on the removal Drimaren Rot K-7B dye from water has been studied. The Freundlich isotherm describes this process better than the Langmuir isotherm. As the results of the adsorption kinetics show, the process fits well with a pseudo-second-order equation and depends both on the boundary layer and on the structure of the adsorbent itself. The thermodynamic parameters have demonstrated that the process is endothermic and physical. When exposed to ultraviolet light, the discoloration of the dye solution accelerates due to the photocatalytic properties of the composite materials. The addition of H2O2 also speeds up further the process, while the reuse of the materials slows it down, gradually changing the kinetic parameters. The reaction has been attributed to first-order kinetic model, when the active centers of the materials and the number of oxidative radicals formed are numerous and to the second-order kinetic model at a lower reaction activity. Moreover, 52% decolorization of the dye solution (50 mg L−1) in the dark was achieved from composite material PA 30 (13.3 g L−1) in 120 min and 89% under UV light irradiation. The H2O2 addition (0.14 mmol L−1) enhanced it up to 98%. In the second and third use of the photocatalyst, the dye removal decreased to 80% and 60%. Composite material PA30 exhibits antibacterial activity against Gram-negative bacteria E. coli, being most effective at eliminating Gram-positive bacteria S. aureus

    Facile Synthesized Cu–RGO and Ag–RGO Nanocomposites with Potential Biomedical Applications

    No full text
    In the present study, we report on the facile prepared nanocomposites of reduced graphene oxide RGO with Cu and Ag. The synthesis was performed through an environmentally friendly and easy method by simultaneous reduction in solutions containing Cu2+ or Ag+ and graphene oxide (GO) using zinc powder as a reducing agent in aqueous acidic media. The composites are characterized by powder X-ray diffraction, low-temperature nitrogen adsorption, X-ray photoelectron and FTIR and Raman spectroscopies, as well as Scanning and Transmission electron microscopies. The antibacterial activity of the composites was tested for Staphylococcus aureus, Escherichia coli and antifungal activity for Candida albicans. The cytotoxicity of the materials was studied towards two types of eukaryotic cells—MDCK II and A549 cell lines. The composites obtained consist of homogeneously distributed Cu and Ag nanoparticles on the surface of graphene sheets and manifest good antimicrobial activity and high cytotoxicity. The results clearly show that both metal–RGO composites can be successfully used as antimicrobial and anticancer agents
    corecore