3,088 research outputs found

    Nodal/Antinodal Dichotomy and the Two Gaps of a Superconducting Doped Mott Insulator

    Full text link
    We study the superconducting state of the hole-doped two-dimensional Hubbard model using Cellular Dynamical Mean Field Theory, with the Lanczos method as impurity solver. In the under-doped regime, we find a natural decomposition of the one-particle (photoemission) energy-gap into two components. The gap in the nodal regions, stemming from the anomalous self-energy, decreases with decreasing doping. The antinodal gap has an additional contribution from the normal component of the self-energy, inherited from the normal-state pseudogap, and it increases as the Mott insulating phase is approached.Comment: Corrected typos, 4.5 pages, 4 figure

    EAST syndrome: Clinical, pathophysiological, and genetic aspects of mutations in KCNJ10

    Get PDF
    EAST syndrome is a recently described autosomal recessive disorder secondary to mutations in KCNJ10 (Kir4.1), a gene encoding a potassium channel expressed in the brain, eye, ear and kidney. This condition is characterized by 4 cardinal features; Epilepsy, Ataxia, Sensorineural deafness, and (a renal salt-wasting) Tubulopathy, hence the acronym EAST syndrome. Here we review reported clinical manifestations, in particular the neurological signs and symptoms which typically have the most impact on the quality of life of patients. In addition we review the pathophysiology and genetic aspects of the disease. So far 14 different KCNJ10 mutations have been published which either directly affect channel function or may lead to mislocalisation. Investigations of the pathophysiology may provide clues to potential treatments

    Surface composition of BaTiO3/SrTiO3(001) films grown by atomic oxygen plasma assisted molecular beam epitaxy

    Full text link
    We have investigated the growth of BaTiO3 thin films deposited on pure and 1% Nb-doped SrTiO3(001) single crystals using atomic oxygen assisted molecular beam epitaxy (AO-MBE) and dedicated Ba and Ti Knudsen cells. Thicknesses up to 30 nm were investigated for various layer compositions. We demonstrate 2D growth and epitaxial single crystalline BaTiO3 layers up to 10 nm before additional 3D features appear; lattice parameter relaxation occurs during the first few nanometers and is completed at {\guillemotright}10 nm. The presence of a Ba oxide rich top layer that probably favors 2D growth is evidenced for well crystallized layers. We show that the Ba oxide rich top layer can be removed by chemical etching. The present work stresses the importance of stoichiometry and surface composition of BaTiO3 layers, especially in view of their integration in devices.Comment: In press in J. Appl. Phy

    Electronic and magnetic properties of metallic phases under coexisting short-range interaction and diagonal disorder

    Full text link
    We study a three-dimensional Anderson-Hubbard model under the coexistence of short-range interaction and diagonal disorder within the Hartree-Fock approximation. We show that the density of states at the Fermi energy is suppressed in the metallic phases near the metal-insulator transition as a proximity effect of the soft Hubbard gap in the insulating phases. The transition to the insulator is characterized by a vanishing DOS in contrast to formation of a quasiparticle peak at the Fermi energy obtained by the dynamical mean field theory in pure systems. Furthermore, we show that there exist frozen spin moments in the paramagnetic metal.Comment: 4 pages, 2 figures, published versio

    Two-dimensional surface charge transport in topological insulators

    Get PDF
    We construct a theory of charge transport by the surface states of topological insulators in three dimensions. The focus is on the experimentally relevant case when the electron doping is such that the Fermi energy εF\varepsilon_F and transport scattering time τ\tau satisfy εFτ/1\varepsilon_F \tau/\hbar \gg 1, but sufficiently low that εF\varepsilon_F lies below the bottom of the conduction band. Our theory is based on the spin density matrix and takes the quantum Liouville equation as its starting point. The scattering term is determined accurately to linear order in the impurity density. We consider scattering by charged impurities and short-range scatterers such as surface roughness. We calculate also the polarization function in topological insulators, emphasizing the differences from graphene. We find that the main contribution to the conductivity is ni1\propto n_i^{-1}, where nin_i is the impurity density, and will have different carrier density dependencies for different forms of scattering. Two different contributions to this conductivity are traced to the scalar and spin-dependent terms in the Hamiltonian and their relative weight depends on the doping density. Our results contain all contributions to the conductivity to orders zero and one in the impurity density. We discuss also a way to determine the dominant scattering angles by studying the ratio of the transport relaxation time to the Bloch lifetime as a function of the Wigner-Seitz radius rsr_s. We also discuss the effect on the surface states of adding metallic contacts. Comment: 16 pages, 3 figure

    Founder mutation in KCNJ10 in Pakistani patients with EAST syndrome.

    Get PDF
    BACKGROUND: EAST syndrome is an autosomal recessive disorder caused by loss-of-function mutations in the gene KCNJ10. Among the 14 pathogenic mutations described so far, the p.R65P mutation stands out as the most frequent one and is particularly associated with patients of Pakistani origin. As a result we aimed to establish the existence of a potential founder effect in the Pakistani population. METHODS: To this end, we genotyped 12 patients from seven families and we compared disease haplotypes with ethnically matched control chromosomes. This haplotype was used together with demographic data for Pakistan to estimate the age of this founder mutation. RESULTS: We identified a small homozygous 0.694 Mb region around the KCNJ10 p.R65P mutation that had identical haplotypes in all of the patients which were completely absent in the control sample. Based on current demographic data and knowledge about disease frequency, we estimate that this particular p.R65P mutation arose 20 generations (about 500 years) ago. CONCLUSION: By knowing the prevalent mutation in a given population more efficient diagnostics can be performed and the families can benefit from specific counseling

    Local Dynamics and Strong Correlation Physics I: 1D and 2D Half-filled Hubbard Models

    Full text link
    We report on a non-perturbative approach to the 1D and 2D Hubbard models that is capable of recovering both strong and weak-coupling limits. We first show that even when the on-site Coulomb repulsion, U, is much smaller than the bandwith, the Mott-Hubbard gap never closes at half-filling in both 1D and 2D. Consequently, the Hubbard model at half-filling is always in the strong-coupling non-perturbative regime. For both large and small U, we find that the population of nearest-neighbour singlet states approaches a value of order unity as T0T\to 0 as would be expected for antiferromagnetic order. We also find that the double occupancy is a smooth monotonic function of U and approaches the anticipated non-interacting limit and large U limits. Finally, in our results for the heat capacity in 1D differ by no more than 1% from the Bethe ansatz predictions. In addition, we find that in 2D, the heat capacity vs T for different values of U exhibits a universal crossing point at two characteristic temperatures as is seen experimentally in a wide range of strongly-correlated systems such as 3He^3He, UBe3UBe_3, and CeCu6xAlxCeCu_{6-x}Al_x. The success of this method in recovering well-established results that stem fundamentally from the Coulomb interaction suggests that local dynamics are at the heart of the physics of strongly correlated systems.Comment: 10 pages, 16 figures included in text, Final version for publication with a reference added and minor corrections. Phys. Rev. B, in pres

    Finite Temperature Density Instability at High Landau Level Occupancy

    Full text link
    We study here the onset of charge density wave instabilities in quantum Hall systems at finite temperature for Landau level filling ν>4\nu>4. Specific emphasis is placed on the role of disorder as well as an in-plane magnetic field. Beyond some critical value, disorder is observed to suppress the charge density wave melting temperature to zero. In addition, we find that a transition from perpendicular to parallel stripes (relative to the in-plane magnetic field) exists when the electron gas thickness exceeds 60\approx 60\AA. The perpendicular alignment of the stripes is in agreement with the experimental finding that the easy conduction direction is perpendicular to the in-plane field.Comment: 4 pages, 2 eps figures. We show explicitly that a transition from perpendicular to parallel stripes (relative to the in-plane magnetic field) exists when the electron gas thickness exceeds 60\approx 60\AA. The perpendicular alignment of the stripes is in agreement with the experimental finding that the easy conduction direction is perpendicular to the in-plane fiel
    corecore