1,008 research outputs found

    Site Changes on Sulfated Zirconia during n-Butane Isomerization: Quasi-In-Situ Adsorption Calorimetry Study with Butanes as Probes

    No full text
    Introduction: Sulfated zirconia (SZ) changes its performance for n-butane isomerization considerably with time on stream (TOS). To probe the relevant sites on active SZ we interrupted the reaction at different stages (induction period, maximum conversion), removed weakly adsorbed species, and measured adsorption isotherms and differential heats of adsorption (qdiff) of butanes. Experimental: The calorimeter cell was used as a fixed bed flow reactor (0.5 g SZ, 378 K, 1 kPa n-butane in N2); the feed was introduced through a capillary. Conversion was monitored by on-line GC. The reaction was stopped after various TOS, the cell was evacuated at 378 K, and placed in a SETARAM MS 70 calorimeter [1]. Adsorption of n- or isobutane was performed at 313 K. Results and Discussion: The isotherms at TOS = 0 could not be fit with a 1st order Langmuir model, indicating a more complicated, maybe activated adsorption process. The differential heats for n- and isobutane adsorption on the unreacted catalyst were similar. The adsorption isotherms for n- and isobutane indicate a decrease of the number of sites for these molecules during the induction period and with further increasing TOS. Throughout the catalytic reaction, the shape of the isotherms changed and the apparent reaction orders decreased approaching 1. At the state of maximum activity, SZ adsorbed similar amounts of n-butane and isobutane (ca. 20 µmol/g at 6 hPa), and the majority of these sites (coverages > 2 micromol/g) produced qdiff ca 40-50 kJ/mol for both adsorptives. At coverages < 2 micromol/g, qdiff for n-butane was as high as 85 kJ/mol, while for isobutane it never exceeded 50 kJ/mol. Quasi-in-situ adsorption microcalorimetry with butanes as probe molecules revealed that only a small number of sites on SZ changes with the performance in n-butane isomerization. 1. L.C. Jozefowicz, H.G. Karge, E.N. Coker, J. Phys. Chem. 98 (1994) 8053

    X-ray properties of the white dwarf pulsar eRASSU J191213.9-441044

    Get PDF
    We report X-ray observations of the newly discovered pulsating white dwarf eRASSU J191213.9-441044 with Spectrum Roentgen Gamma and eROSITA (SRG/eROSITA) and XMM-Newton. The new source was discovered during the first eROSITA all-sky survey at a flux level of fX (0.2 - 2.3 keV) = 3.3 e-13 erg cm-2 s-1 and found to be spatially coincident with a G = 17.1 stellar Gaia-source at a distance of 237 pc. The flux dropped to about fX = 1 e-13 erg cm-2 s-1 during the three following eROSITA all-sky surveys and remained at this lower level during dedicated XMM-Newton observations performed in September 2022. With XMM-Newton, pulsations with a period of 319 s were found at X-ray and ultraviolet wavelengths occurring simultaneously in time, thus confirming the nature of eRASSU J191213.9-441044 as the second white-dwarf pulsar. The X-ray and UV-pulses correspond to broad optical pulses. Narrow optical pulses that occurred occasionally during simultaneous XMM-Newton/ULTRACAM observations have no X-ray counterpart. The orbital variability of the X-ray signal with a roughly sinusoidal shape was observed with a pulsed fraction of ~28% and maximum emission at orbital phase ~0.25. The ultraviolet light curve peaks at around binary phase 0.45. The X-ray spectrum can be described with the sum of a power law spectrum and a thermal component with a mean X-ray luminosity of Lx(0.2-10 keV) = 1.4 e30 erg s-1. The spectral and variability properties could indicate some residual accretion, in contrast to the case of the prototypical object AR Sco.Comment: 6 pages, 7 figures, A&A Letter accepte

    Structural and Active Site Characterization of Sulfated Zirconia Catalysts for Light Alkane Isomerization

    No full text
    Two different sulfated zirconia catalysts were produced through precipitation from zirconyl nitrate solutions, followed by aging of the precipitate either at 298 K for 1 h (SZ-1) or 373 K for 24 h (SZ-2). After drying, the samples were sulfated with ammonium sulfate and calcined for 3 h at 873 K. SZ-1 had a smaller surface area (90 m2 g-1) than SZ-2 (140 m2 g-1) but displayed a one order of magnitude higher maximum n-butane isomerization rate (373–423 K, 1–5 kPa n-butane at 101.3 kPa total pressure). Both materials consisted predominantly of tetragonal ZrO2, contained 9 wt% of sulfate, and adsorbed about 0.5 mmol g-1 NH3. Measurements of adsorption isotherms and differential heats for propane and iso-butane at 313 K reveal a larger number of adsorption sites on SZ-1 than on SZ-2, extrapolated to 1 kPa, 42 vs. 20 µmol g-1 (propane) and 120 vs. 44 µmol g-1 (iso-butane). At coverages > 2 µmol g-1 the heats were similar for both samples with both probes and decreased from 60 to 40 kJ mol-1. Temporal analysis of products measurements indicated shorter residence times for n-butane than for iso-butane, and SZ-1 retained both of these molecules longer than SZ-2. The activation energy for n-butane desorption was 45 kJ mol-1 for both samples. Interaction with pulses of CO2 suggested that non-sulfated, basic ZrO2 surface is exposed on SZ-2, consistent with the larger surface area at the same sulfate content as SZ-1. The results suggest that only a fraction of the sulfate groups participates in adsorption and that product desorption may be of importance

    Structural and Active Site Characterization of Sulfated Zirconia Catalysts for Light Alkane Isomerization

    No full text
    Sulfated zirconia (SZ) is active for light alkane isomerization at temperatures as low as 373 K [1]. The material has been investigated extensively in the past 2 decades [2] but so far no convincing structure-activity relationship has been established. Here, we report on the investigation of two different SZ materials with an interesting combination of properties. Both materials have a sulfate content of 9 wt.%; however, the material with lower specific surface area (SZ-1, 90 m2og-1) displays a maximum n-butane isomerization rate (373-423 K, 1-5 kPa n-butane at 101.3 kPa total pressure) that is about one order of magnitude higher than that of the material with higher specific surface area (SZ-2, 140 m2og-1). Both materials were produced through precipitation from zirconyl nitrate solution, followed by aging of the precipitate either at 298 K for 1 h (SZ-1) or 373 K for 24 h (SZ-2). After drying, the samples were sulfated with ammonium sulfate and calcined for 3 h at 873 K. Scanning electron microscopy showed typical particle sizes of 5 to 20 µm for SZ-1, and of 1 to 5 µm for SZ-2. X-ray diffraction and Zr K-edge X-ray absorption spectra identified both materials as predominantly tetragonal ZrO2, but SZ-2 exhibited smaller crystalline domains than SZ-1 (7.5 vs. 10 nm). Diffuse reflectance IR spectra taken during catalyst activation (523 K, inert gas) suggest that the sulfate structures on the two materials rearrange in a slightly different way during dehydration. This is tentatively attributed to different sulfate group densities that result from the ratios of sulfate content to surface area. By ammonia adsorption/desorption, the concentration of acid sites was determined to be 0.52 and 0.48 mmolog-1 for SZ-1 and SZ-2, respectively; this result is not reflected by the catalytic activities. Temporal analysis of products measurements indicated that the residence times for n-butane were shorter than for i-butane, and SZ-1 retained both these molecules longer than SZ-2. The activation energy for n-butane desorption was equivalent for both samples, i.e., 40-41 kJomol-1. Calorimetric measurements of the adsorption of reactant and product at 313 K produced the following results. At 0.3 kPa alkane pressure, SZ-1 and SZ-2 adsorbed similar amounts of n-butane (20 and 25 µmol), but very different amounts of i-butane (80 and 25 µmol). At coverages below 2 µmol the differential heats of adsorption of n-butane were much higher on SZ-2 than on SZ-1, while at higher coverages the heats were nearly identical for both samples and decreased from 60 to 40 kJomol-1. The samples did not differ with respect to the strength of interaction with i-butane, the heats decreased with increasing coverage from 60 to 40 kJomol-1. The results demonstrate that (i) typical SZ catalysts have fewer than 100 µmolog-1 sites, rendering identification by spectroscopic techniques difficult, and (ii) product desorption is a critical factor for the catalytic performance. References: [1] M. Hino, K. Arata, J. Chem. Soc. Chem. Comm. (1980) 851. [2] X. Song, A. Sayari, Catal. Rev. Sci. Eng., 38 (1996) 32

    Deceleration in the Expansion of SN1993J

    Get PDF
    A rarity among supernova, SN 1993J in M81 can be studied with high spatial resolution. Its radio power and distance permit VLBI observations to monitor the expansion of its angular structure. This radio structure was previously revealed to be shell-like and to be undergoing a self-similar expansion at a constant rate. From VLBI observations at the wavelengths of 3.6 and 6 cm in the period 6 to 42 months after explosion, we have discovered that the expansion is decelerating. Our measurement of this deceleration yields estimates of the density profiles of the supernova ejecta and circumstellar material in standard supernova explosion models.Comment: to appear in Astrophysical Journal Letters 10 pages of text, three figures (two of them in postscript format, one in gif format

    Cataclysmic Variables from Sloan Digital Sky Survey V -- the search for period bouncers continues

    Full text link
    SDSS-V is carrying out a dedicated survey for white dwarfs, single and in binaries, and we report the analysis of the spectroscopy of cataclysmic variables (CVs) and CV candidates obtained during the final plug plate observations of SDSS. We identify eight new CVs, spectroscopically confirm 53 and refute eleven published CV candidates, and we report 21 new or improved orbital periods. Combined with previously published data, the orbital period distribution of the SDSS-V CVs does not clearly exhibit a period gap. This is consistent with previous findings that spectroscopically identified CVs have a larger proportion of short-period systems compared to samples identified from photometric variability. Remarkably, despite a systematic search, we find very few period bouncers. We estimate the space density of period bouncers to be ≃0.2×10−6 pc−3\simeq0.2\times10^{-6}\,\mathrm{pc}^{-3}, i.e. they represent only a few per cent of the total CV population. This suggests that during their final phase of evolution, CVs either destroy the donor, e.g. via a merger, or that they become detached and cease mass transfer.Comment: Submitted to MNRA

    Search for Eccentric Binary Black Hole Mergers with Advanced LIGO and Advanced Virgo during Their First and Second Observing Runs

    Get PDF
    When formed through dynamical interactions, stellar-mass binary black holes (BBHs) may retain eccentric orbits (e &gt; 0.1 at 10 Hz) detectable by ground-based gravitational-wave detectors. Eccentricity can therefore be used to differentiate dynamically formed binaries from isolated BBH mergers. Current template-based gravitational-wave searches do not use waveform models associated with eccentric orbits, rendering the search less efficient for eccentric binary systems. Here we present the results of a search for BBH mergers that inspiral in eccentric orbits using data from the first and second observing runs (O1 and O2) of Advanced LIGO and Advanced Virgo. We carried out the search with the coherent WaveBurst algorithm, which uses minimal assumptions on the signal morphology and does not rely on binary waveform templates. We show that it is sensitive to binary mergers with a detection range that is weakly dependent on eccentricity for all bound systems. Our search did not identify any new binary merger candidates. We interpret these results in light of eccentric binary formation models. We rule out formation channels with rates ⪆100 Gpc-3 yr-1 for e &gt; 0.1, assuming a black hole mass spectrum with a power-law index ≲2

    GW190521 : A Binary Black Hole Merger with a Total Mass of 150  M_{⊙}

    Get PDF
    On May 21, 2019 at 03:02:29 UTC Advanced LIGO and Advanced Virgo observed a short duration gravitational-wave signal, GW190521, with a three-detector network signal-to-noise ratio of 14.7, and an estimated false-alarm rate of 1 in 4900 yr using a search sensitive to generic transients. If GW190521 is from a quasicircular binary inspiral, then the detected signal is consistent with the merger of two black holes with masses of 85_{-14}^{+21}  M_{⊙} and 66_{-18}^{+17}  M_{⊙} (90% credible intervals). We infer that the primary black hole mass lies within the gap produced by (pulsational) pair-instability supernova processes, with only a 0.32% probability of being below 65  M_{⊙}. We calculate the mass of the remnant to be 142_{-16}^{+28}  M_{⊙}, which can be considered an intermediate mass black hole (IMBH). The luminosity distance of the source is 5.3_{-2.6}^{+2.4}  Gpc, corresponding to a redshift of 0.82_{-0.34}^{+0.28}. The inferred rate of mergers similar to GW190521 is 0.13_{-0.11}^{+0.30}  Gpc^{-3} yr^{-1}
    • …
    corecore