474 research outputs found
Dynamic binding of driven interfaces in coupled ultrathin ferromagnetic layers
We demonstrate experimentally dynamic interface binding in a system
consisting of two coupled ferromagnetic layers. While domain walls in each
layer have different velocity-field responses, for two broad ranges of the
driving field, H, walls in the two layers are bound and move at a common
velocity. The bound states have their own velocity-field response and arise
when the isolated wall velocities in each layer are close, a condition which
always occurs as H->0. Several features of the bound states are reproduced
using a one dimensional model, illustrating their general nature.Comment: 5 pages, 4 figures, to be published in Physical Review Letter
Melting of hexagonal skyrmion states in chiral magnets
Skyrmions are spiral structures observed in thin films of certain magnetic materials (Uchida et al 2006 Science 311 359–61). Of the phases allowed by the crystalline symmetries of these materials (Yi et al 2009 Phys. Rev. B 80 054416), only the hexagonally packed phases (SCh) have been observed. Here the melting of the SCh phase is investigated using Monte Carlo simulations. In addition to the usual measure of skyrmion density, chiral charge, a morphological measure is considered. In doing so it is shown that the low-temperature reduction in chiral charge is associated with a change in skyrmion profiles rather than skyrmion destruction. At higher temperatures, the loss of six-fold symmetry is associated with the appearance of elongated skyrmions that disrupt the hexagonal packing
Dipolar ground state of planar spins on triangular lattices
An infinite triangular lattice of classical dipolar spins is usually
considered to have a ferromagnetic ground state. We examine the validity of
this statement for finite lattices and in the limit of large lattices. We find
that the ground state of rectangular arrays is strongly dependent on size and
aspect ratio. Three results emerge that are significant for understanding the
ground state properties: i) formation of domain walls is energetically favored
for aspect ratios below a critical valu e; ii) the vortex state is always
energetically favored in the thermodynamic limit of an infinite number of
spins, but nevertheless such a configuration may not be observed even in very
large lattices if the aspect ratio is large; iii) finite range approximations
to actual dipole sums may not provide the correct ground sta te configuration
because the ferromagnetic state is linearly unstable and the domain wall energy
is negative for any finite range cutoff.Comment: Several short parts have been rewritten. Accepted for publication as
a Rapid Communication in Phys. Rev.
Coupled ferro-antiferromagnetic Heisenberg bilayers investigated by many-body Green's function theory
A theory of coupled ferro- and antiferromagnetic Heisenberg layers is
developed within the framework of many-body Green's function theory (GFT) that
allows non-collinear magnetic arrangements by introducing sublattice
structures. As an example, the coupled ferro- antiferromagnetic (FM-AFM)
bilayer is investigated. We compare the results with those of bilayers with
purely ferromagnetic or antiferromagnetic couplings. In each case we also show
the corresponding results of mean field theory (MFT), in which magnon
excitations are completely neglected. There are significant differences between
GFT and MFT. A remarkable finding is that for the coupled FM-AFM bilayer the
critical temperature decreases with increasing interlayer coupling strength for
a simple cubic lattice, whereas the opposite is true for an fcc lattice as well
as for MFT for both lattice types.Comment: 17 pages, 6 figures, accepted for publication in J. Phys. Condens.
Matter, missing fig.5 adde
Magnetic properties of exchange biased and of unbiased oxide/permalloy thin layers: a ferromagnetic resonance and Brillouin scattering study
Microstrip ferromagnetic resonance and Brillouin scattering are used to
provide a comparative determination of the magnetic parameters of thin
permalloy layers interfaced with a non-magnetic (Al2O3) or with an
antiferromagnetic oxide (NiO). It is shown that the perpendicular anisotropy is
monitored by an interfacial surface energy term which is practically
independent of the nature of the interface. In the investigated interval of
thicknesses (5-25 nm) the saturation magnetisation does not significantly
differ from the reported one in bulk permalloy. In-plane uniaxial anisotropy
and exchange-bias anisotropy are also derived from this study of the dynamic
magnetic excitations and compared to our independent evaluations using
conventional magnetometryComment: 7 pages, 6 figures, submited to Journal of Physics: Condensed Matte
Model of bound interface dynamics for coupled magnetic domain walls
A domain wall in a ferromagnetic system will move under the action of an
external magnetic field. Ultrathin Co layers sandwiched between Pt have been
shown to be a suitable experimental realization of a weakly disordered 2D
medium in which to study the dynamics of 1D interfaces (magnetic domain walls).
The behavior of these systems is encapsulated in the velocity-field response
v(H) of the domain walls. In a recent paper [P.J. Metaxas et al., Phys. Rev.
Lett. 104, 237206 (2010)] we studied the effect of ferromagnetic coupling
between two such ultrathin layers, each exhibiting different v(H)
characteristics. The main result was the existence of bound states over
finite-width field ranges, wherein walls in the two layers moved together at
the same speed. Here, we discuss in detail the theory of domain wall dynamics
in coupled systems. In particular, we show that a bound creep state is expected
for vanishing H and we give the analytical, parameter free expression for its
velocity which agrees well with experimental results.Comment: 9 page
Spin-wave propagation in a microstructured magnonic crystal
Transmission of microwave spin waves through a microstructured magnonic
crystal in the form of a permalloy waveguide of a periodically varying width
was studied experimentally and theoretically. The spin wave characteristics
were measured by spatially-resolved Brillouin light scattering microscopy. A
rejection frequency band was clearly observed. The band gap frequency was
controlled by the applied magnetic field. The measured spin-wave intensity as a
function of frequency and propagation distance is in good agreement with a
model calculation.Comment: 4 pages, 3 figure
Anisotropy effects on the magnetic excitations of a ferromagnetic monolayer below and above the Curie temperature
The field-driven reorientation transition of an anisotropic ferromagnetic
monolayer is studied within the context of a finite-temperature Green's
function theory. The equilibrium state and the field dependence of the magnon
energy gap are calculated for static magnetic field applied in plane
along an easy or a hard axis. In the latter case, the in-plane reorientation of
the magnetization is shown to be continuous at T=0, in agreement with free spin
wave theory, and discontinuous at finite temperature , in contrast with
the prediction of mean field theory. The discontinuity in the orientation angle
creates a jump in the magnon energy gap, and it is the reason why, for ,
the energy does not go to zero at the reorientation field. Above the Curie
temperature , the magnon energy gap vanishes for H=0 both in the
easy and in the hard case. As is increased, the gap is found to increase
almost linearly with , but with different slopes depending on the field
orientation. In particular, the slope is smaller when is along the hard
axis. Such a magnetic anisotropy of the spin-wave energies is shown to persist
well above ().Comment: Final version accepted for publication in Physical Review B (with
three figures
- …