378 research outputs found
Exchange anisotropy pinning of a standing spin wave mode
Standing spin waves in a thin film are used as sensitive probes of interface
pinning induced by an antiferromagnet through exchange anisotropy. Using
coplanar waveguide ferromagnetic resonance, pinning of the lowest energy spin
wave thickness mode in Ni(80)Fe(20)/Ir(25)Mn(75) exchange biased bilayers was
studied for a range of IrMn thicknesses. We show that pinning of the standing
mode can be used to amplify, relative to the fundamental resonance, frequency
shifts associated with exchange bias. The shifts provide a unique `fingerprint'
of the exchange bias and can be interpreted in terms of an effective
ferromagnetic film thickness and ferromagnet/antiferromagnet interface
anisotropy. Thermal effects are studied for ultra-thin antiferromagnetic
Ir(25)Mn(75) thicknesses, and the onset of bias is correlated with changes in
the pinning fields. The pinning strength magnitude is found to grow with
cooling of the sample, while the effective ferromagnetic film thickness
simultaneously decreases. These results suggest that exchange bias involves
some deformation of magnetic order in the interface region.Comment: 7 pages, 7 figure
Spin-wave propagation in a microstructured magnonic crystal
Transmission of microwave spin waves through a microstructured magnonic
crystal in the form of a permalloy waveguide of a periodically varying width
was studied experimentally and theoretically. The spin wave characteristics
were measured by spatially-resolved Brillouin light scattering microscopy. A
rejection frequency band was clearly observed. The band gap frequency was
controlled by the applied magnetic field. The measured spin-wave intensity as a
function of frequency and propagation distance is in good agreement with a
model calculation.Comment: 4 pages, 3 figure
Probing the interface magnetism in the FeMn/NiFe exchange bias system using magnetic second harmonic generation
Second harmonic generation magneto-optic Kerr effect (SHMOKE) experiments,
sensitive to buried interfaces, were performed on a polycrystalline NiFe/FeMn
bilayer in which areas with different exchange bias fields were prepared using
5 KeV He ion irradiation. Both reversible and irreversible uncompensated spins
are found in the antiferromagnetic layer close to the interface with the
ferromagnetic layer. The SHMOKE hysteresis loop shows the same exchange bias
field as obtained from standard magnetometry. We demonstrate that the exchange
bias effect is controlled by pinned uncompensated spins in the
antiferromagnetic layer.Comment: submitted to Phys. Rev. Let
Correlation between tunneling magnetoresistance and magnetization in dipolar coupled nanoparticle arrays
The tunneling magnetoresistance (TMR) of a hexagonal array of dipolar coupled
anisotropic magnetic nanoparticles is studied using a resistor network model
and a realistic micromagnetic configuration obtained by Monte Carlo
simulations. Analysis of the field-dependent TMR and the corresponding
magnetization curve shows that dipolar interactions suppress the maximum TMR
effect, increase or decrease the field-sensitivity depending on the direction
of applied field and introduce strong dependence of the TMR on the direction of
the applied magnetic field. For off-plane magnetic fields, maximum values in
the TMR signal are associated with the critical field for irreversible rotation
of the magnetization. This behavior is more pronounced in strongly interacting
systems (magnetically soft), while for weakly interacting systems (magnetically
hard) the maximum of TMR (Hmax) occurs below the coercive field (Hc), in
contrast to the situation for non-interacting nanoparticles or in-plane fields
(Hmax=Hc). The relation of our simulations to recent TMR measurements in
self-assembled Co nanoparticle arrays is discussed.Comment: 21 pages, 8 figures, submitted to Physical Review
Finite-Size and surface effects in maghemite nanoparticles: Monte Carlo simulations
Finite-size and surface effects in fine particle systems are investigated by
Monte Carlo simulation of a model of a -FeO (maghemite) single
particle. Periodic boundary conditions have been used to simulate the bulk
properties and the results compared with those for a spherical shaped particle
with free boundaries to evidence the role played by the surface on the
anomalous magnetic properties displayed by these systems at low temperatures.
Several outcomes of the model are in qualitative agreement with the
experimental findings. A reduction of the magnetic ordering temperature,
spontaneous magnetization, and coercive field is observed as the particle size
is decreased. Moreover, the hysteresis loops become elongated with high values
of the differential susceptibility, resembling those from frustrated or
disordered systems. These facts are consequence of the formation of a surface
layer with higher degree of magnetic disorder than the core, which, for small
sizes, dominates the magnetization processes of the particle. However, in
contradiction with the assumptions of some authors, our model does not predict
the freezing of the surface layer into a spin-glass-like state. The results
indicate that magnetic disorder at the surface simply facilitates the thermal
demagnetization of the particle at zero field, while the magnetization is
increased at moderate fields, since surface disorder diminishes ferrimagnetic
correlations within the particle. The change in shape of the hysteresis loops
with the particle size demonstrates that the reversal mode is strongly
influenced by the reduced atomic coordination and disorder at the surface.Comment: Twocolumn RevTex format. 19 pages, 15 Figures included. Submitted to
Phys. Rev.
Electronic transport through domain walls in ferromagnetic nanowires: Co-existence of adiabatic and non-adiabatic spin dynamics
We study the effect of a domain wall on the electronic transport in
ferromagnetic quantum wires. Due to the transverse confinement, conduction
channels arise. In the presence of a domain wall, spin up and spin down
electrons in these channels become coupled. For very short domain walls or at
high longitudinal kinetic energy, this coupling is weak, leads to very few spin
flips, and a perturbative treatment is possible. For very long domain wall
structures, the spin follows adiabatically the local magnetization orientation,
suppressing the effect of the domain wall on the total transmission, but
reversing the spin of the electrons. In the intermediate regime, we numerically
investigate the spin-dependent transport behavior for different shapes of the
domain wall. We find that the knowledge of the precise shape of the domain wall
is not crucial for determining the qualitative behavior. For parameters
appropriate for experiments, electrons with low longitudinal energy are
transmitted adiabatically while the electrons at high longitudinal energy are
essentially unaffected by the domain wall. Taking this co-existence of
different regimes into account is important for the understanding of recent
experiments.Comment: 10 pages, 6 figure
A biogeographic reversal in sexual size dimorphism along a continental temperature gradient
© 2018 The Authors The magnitude and direction of sexual size dimorphism (SSD) varies greatly across the animal kingdom, reflecting differential selection pressures on the reproductive and/or ecological roles of males and females. If the selection pressures and constraints imposed on body size change along environmental gradients, then SSD will vary geographically in a predictable way. Here, we uncover a biogeographical reversal in SSD of lizards from Central and North America: in warm, low latitude environments, males are larger than females, but at colder, high latitudes, females are larger than males. Comparisons to expectations under a Brownian motion model of SSD evolution indicate that this pattern reflects differences in the evolutionary rates and/or trajectories of sex-specific body sizes. The SSD gradient we found is strongly related to mean annual temperature, but is independent of species richness and body size differences among species within grid cells, suggesting that the biogeography of SSD reflects gradients in sexual and/or fecundity selection, rather than intersexual niche divergence to minimize intraspecific competition. We demonstrate that the SSD gradient is driven by stronger variation in male size than in female size and is independent of clutch mass. This suggests that gradients in sexual selection and male–male competition, rather than fecundity selection to maximize reproductive output by females in seasonal environments, are predominantly responsible for the gradient
- …