108 research outputs found

    Atypical miRNA expression in temporal cortex associated with dysregulation of immune, cell cycle, and other pathways in autism spectrum disorders.

    Get PDF
    BackgroundAutism spectrum disorders (ASDs) likely involve dysregulation of multiple genes related to brain function and development. Abnormalities in individual regulatory small non-coding RNA (sncRNA), including microRNA (miRNA), could have profound effects upon multiple functional pathways. We assessed whether a brain region associated with core social impairments in ASD, the superior temporal sulcus (STS), would evidence greater transcriptional dysregulation of sncRNA than adjacent, yet functionally distinct, primary auditory cortex (PAC).MethodsWe measured sncRNA expression levels in 34 samples of postmortem brain from STS and PAC to find differentially expressed sncRNA in ASD compared with control cases. For differentially expressed miRNA, we further analyzed their predicted mRNA targets and carried out functional over-representation analysis of KEGG pathways to examine their functional significance and to compare our findings to reported alterations in ASD gene expression.ResultsTwo mature miRNAs (miR-4753-5p and miR-1) were differentially expressed in ASD relative to control in STS and four (miR-664-3p, miR-4709-3p, miR-4742-3p, and miR-297) in PAC. In both regions, miRNA were functionally related to various nervous system, cell cycle, and canonical signaling pathways, including PI3K-Akt signaling, previously implicated in ASD. Immune pathways were only disrupted in STS. snoRNA and pre-miRNA were also differentially expressed in ASD brain.ConclusionsAlterations in sncRNA may underlie dysregulation of molecular pathways implicated in autism. sncRNA transcriptional abnormalities in ASD were apparent in STS and in PAC, a brain region not directly associated with core behavioral impairments. Disruption of miRNA in immune pathways, frequently implicated in ASD, was unique to STS

    FT-IR spectral analysis for a newly obtained structure analog of bexarotene

    Get PDF
    INTRODUCTION: Retinoids are natural and synthetic compounds part of the family of polyisoprenoid lipids. These compounds are involved in several important physiological processes in the human body because of their ability to bind to different nuclear receptors. Retinoids are used in the therapy of some precancerous lesions, the treatment of acute promyelocytic leukemia (APL), T-cell lymphoma, and the prevention of malignancies in high-risk cancer groups. In this work we discuss the possibilities for analysis of the newly synthesized hydrazone of the retinoid bexarotene.  AIM: The purpose of this study is to conduct FTIR spectral analysis of newly synthesized hydrazone of bexarotene.MATERIALS AND METHODS: Infrared spectra 500-4000 cm-1 were taken on a Bruker FTIR spectrometer using ATR - a plug with Smart iTR adapter.RESULTS: The infrared spectra of the newly synthesized compound were strikingly similar in the relative positions and intensities of the resulting peaks, confirming its close structural relationship with bexarotene. Despite the structural similarity, there were significant differences that point to the introduction of a substituent and the formation of a new hydrazone derivative.CONCLUSION:  In order to confirm the data obtained by FTIR spectroscopy, a further reversed-phase HPLC-UV analysis of the new hydrazone derivative should be performed

    Gram-negative bacterial molecules associate with Alzheimer disease pathology.

    Get PDF
    ObjectiveWe determined whether Gram-negative bacterial molecules are associated with Alzheimer disease (AD) neuropathology given that previous studies demonstrate Gram-negative Escherichia coli bacteria can form extracellular amyloid and Gram-negative bacteria have been reported as the predominant bacteria found in normal human brains.MethodsBrain samples from gray and white matter were studied from patients with AD (n = 24) and age-matched controls (n = 18). Lipopolysaccharide (LPS) and E coli K99 pili protein were evaluated by Western blots and immunocytochemistry. Human brain samples were assessed for E coli DNA followed by DNA sequencing.ResultsLPS and E coli K99 were detected immunocytochemically in brain parenchyma and vessels in all AD and control brains. K99 levels measured using Western blots were greater in AD compared to control brains (p < 0.01) and K99 was localized to neuron-like cells in AD but not control brains. LPS levels were also greater in AD compared to control brain. LPS colocalized with Aβ1-40/42 in amyloid plaques and with Aβ1-40/42 around vessels in AD brains. DNA sequencing confirmed E coli DNA in human control and AD brains.ConclusionsE coli K99 and LPS levels were greater in AD compared to control brains. LPS colocalized with Aβ1-40/42 in amyloid plaques and around vessels in AD brain. The data show that Gram-negative bacterial molecules are associated with AD neuropathology. They are consistent with our LPS-ischemia-hypoxia rat model that produces myelin aggregates that colocalize with Aβ and resemble amyloid-like plaques

    microRNA expression in peripheral blood cells following acute ischemic stroke and their predicted gene targets.

    Get PDF
    BackgroundmicroRNA (miRNA) are important regulators of gene expression. In patients with ischemic stroke we have previously shown that differences in immune cell gene expression are present. In this study we sought to determine the miRNA that are differentially expressed in peripheral blood cells of patients with acute ischemic stroke and thus may regulate immune cell gene expression.MethodsmiRNA from peripheral blood cells of forty-eight patients with ischemic stroke and vascular risk factor controls were compared. Differentially expressed miRNA in patients with ischemic stroke were determined by microarray with qRT-PCR confirmation. The gene targets and pathways associated with ischemic stroke that may be regulated by the identified miRNA were characterized.ResultsIn patients with acute ischemic stroke, miR-122, miR-148a, let-7i, miR-19a, miR-320d, miR-4429 were decreased and miR-363, miR-487b were increased compared to vascular risk factor controls. These miRNA are predicted to regulate several genes in pathways previously identified by gene expression analyses, including toll-like receptor signaling, NF-κβ signaling, leukocyte extravasation signaling, and the prothrombin activation pathway.ConclusionsSeveral miRNA are differentially expressed in blood cells of patients with acute ischemic stroke. These miRNA may regulate leukocyte gene expression in ischemic stroke including pathways involved in immune activation, leukocyte extravasation and thrombosis

    Transcriptomic Analysis of Starch Biosynthesis in the Developing Grain of Hexaploid Wheat

    Get PDF
    The expression of genes involved in starch synthesis in wheat was analyzed together with the accumulation profiles of soluble sugars, starch, protein, and starch granule distribution in developing caryopses obtained from the same biological materials used for profiling of gene expression using DNA microarrays. Multiple expression patterns were detected for the different starch biosynthetic gene isoforms, suggesting their relative importance through caryopsis development. Members of the ADP-glucose pyrophosphorylase, starch synthase, starch branching enzyme, and sucrose synthase gene families showed different expression profiles; expression of some members of these gene families coincided with a period of high accumulation of starch while others did not. A biphasic pattern was observed in the rates of starch and protein accumulation which paralleled changes in global gene expression. Metabolic and regulatory genes that show a pattern of expression similar to starch accumulation and granule size distribution were identified, suggesting their coinvolvement in these biological processes

    Possible sexually dimorphic role of miRNA and other sncRNA in ASD brain

    Get PDF
    BackgroundAutism spectrum disorder (ASD) is sexually dimorphic in brain structure, genetics, and behaviors. In studies of brain tissue, the age of the population is clearly a factor in interpreting study outcome, yet sex is rarely considered. To begin to address this issue, we extend our previously published microarray analyses to examine expression of small noncoding RNAs (sncRNAs), including microRNAs (miRNAs), in ASD and in the control temporal cortex in males and females. Predicted miRNA targets were identified as well as the pathways they overpopulate.FindingsAfter considering age, sexual dimorphism in ASD sncRNA expression persists in the temporal cortex and in the patterning that distinguishes regions. Among the sexually dimorphic miRNAs are miR-219 and miR-338, which promote oligodendrocyte differentiation, miR-125, implicated in neuronal differentiation, and miR-488, implicated in anxiety. Putative miRNA targets are significantly over-represented in immune and nervous system pathways in both sexes, consistent with previous mRNA studies. Even for common pathways, the specific target mRNAs are often sexually dimorphic. For example, both male and female target genes significantly populate the Axonal Guidance Signaling pathway, yet less than a third of the targets are common to both sexes.ConclusionsOur findings of sexual dimorphism in sncRNA levels underscore the importance of considering sex, in addition to age, when interpreting molecular findings on ASD brain

    Smoking affects gene expression in blood of patients with ischemic stroke.

    Get PDF
    ObjectiveThough cigarette smoking (CS) is a well-known risk factor for ischemic stroke (IS), there is no data on how CS affects the blood transcriptome in IS patients.MethodsWe recruited IS-current smokers (IS-SM), IS-never smokers (IS-NSM), control-smokers (C-SM), and control-never smokers (C-NSM). mRNA expression was assessed on HTA-2.0 microarrays and unique as well as commonly expressed genes identified for IS-SM versus IS-NSM and C-SM versus C-NSM.ResultsOne hundred and fifty-eight genes were differentially expressed in IS-SM versus IS-NSM; 100 genes were differentially expressed in C-SM versus C-NSM; and 10 genes were common to both IS-SM and C-SM (P < 0.01; |fold change| ≥ 1.2). Functional pathway analysis showed the 158 IS-SM-regulated genes were associated with T-cell receptor, cytokine-cytokine receptor, chemokine, adipocytokine, tight junction, Jak-STAT, ubiquitin-mediated proteolysis, and adherens junction signaling. IS-SM showed more altered genes and functional networks than C-SM.InterpretationWe propose some of the 10 genes that are elevated in both IS-SM and C-SM (GRP15, LRRN3, CLDND1, ICOS, GCNT4, VPS13A, DAP3, SNORA54, HIST1H1D, and SCARNA6) might contribute to increased risk of stroke in current smokers, and some genes expressed by blood leukocytes and platelets after stroke in smokers might contribute to worse stroke outcomes that occur in smokers
    corecore