48 research outputs found

    A Process Model of Risk Communication: The Case of Global Climate Change

    Get PDF
    The authors describe a survey of public media use as it relates to different stages of awareness and concern regarding risk issues

    Functional modularity of nuclear hormone receptors in a Caenorhabditis elegans metabolic gene regulatory network

    Get PDF
    We present the first gene regulatory network (GRN) that pertains to post-developmental gene expression. Specifically, we mapped a transcription regulatory network of Caenorhabditis elegans metabolic gene promoters using gene-centered yeast one-hybrid assays. We found that the metabolic GRN is enriched for nuclear hormone receptors (NHRs) compared with other gene-centered regulatory networks, and that these NHRs organize into functional network modules.The NHR family has greatly expanded in nematodes; C. elegans has 284 NHRs, whereas humans have only 48. We show that the NHRs in the metabolic GRN have metabolic phenotypes, suggesting that they do not simply function redundantly.The mediator subunit MDT-15 preferentially interacts with NHRs that occur in the metabolic GRN.We describe an NHR circuit that responds to nutrient availability and propose a model for the evolution and organization of NHRs in C. elegans metabolic regulatory networks

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Search for single production of vector-like quarks decaying into Wb in pp collisions at s=8\sqrt{s} = 8 TeV with the ATLAS detector

    Get PDF

    Measurement of the charge asymmetry in top-quark pair production in the lepton-plus-jets final state in pp collision data at s=8TeV\sqrt{s}=8\,\mathrm TeV{} with the ATLAS detector

    Get PDF

    Measurement of the bbb\overline{b} dijet cross section in pp collisions at s=7\sqrt{s} = 7 TeV with the ATLAS detector

    Get PDF

    ATLAS Run 1 searches for direct pair production of third-generation squarks at the Large Hadron Collider

    Get PDF

    Charged-particle distributions at low transverse momentum in s=13\sqrt{s} = 13 TeV pppp interactions measured with the ATLAS detector at the LHC

    Get PDF
    corecore