168 research outputs found

    17Ξ²-Estradiol Prevents Early-Stage Atherosclerosis in Estrogen Receptor-Alpha Deficient Female Mice

    Get PDF
    Estrogen is atheroprotective and a high-affinity ligand for both known estrogen receptors, ERΞ± and ERΞ². However, the role of the ERΞ± in early-stage atherosclerosis has not been directly investigated and is incompletely understood. ERΞ±-deficient (ERΞ±βˆ’/βˆ’) and wild-type (ERΞ±+/+) female mice consuming an atherogenic diet were studied concurrent with estrogen replacement to distinguish the actions of 17Ξ²-estradiol (E2) from those of ERΞ± on the development of early atherosclerotic lesions. Mice were ovariectomized and implanted with subcutaneous slow-release pellets designed to deliver 6 or 8 μg/day of exogenous 17Ξ²-estradiol (E2) for a period of up to 4Β months. Ovariectomized mice (OVX) with placebo pellets (E2-deficient controls) were compared to mice with endogenous E2 (intact ovaries) and exogenous E2. Aortas were analyzed for lesion area, number, and distribution. Lipid and hormone levels were also determined. Compared to OVX, early lesion development was significantly (p < 0.001) attenuated by E2 with 55–64% reduction in lesion area by endogenous E2 and >90% reduction by exogenous E2. Compared to OVX, a decline in lesion number (2- to 4-fold) and lesser predilection (~4-fold) of lesion formation in the proximal aorta also occurred with E2. Lesion size, development, number, and distribution inversely correlated with circulating plasma E2 levels. However, atheroprotection was independent of ERΞ± status, and E2 athero-protection in both genotypes was not explained by changes in plasma lipid levels (total cholesterol, triglyceride, and high-density lipoprotein cholesterol). The ERΞ± is not essential for endogenous/exogenous E2-mediated protection against early-stage atherosclerosis. These observations have potentially significant implications for understanding the molecular and cellular mechanisms and timing of estrogen action in different estrogen receptor (ER) deletion murine models of atherosclerosis, as well as implications to human studies of ER polymorphisms and lipid metabolism. Our findings may contribute to future improved clinical decision-making concerning the use of hormone therapy

    Functional Deficits in nNOSΞΌ-Deficient Skeletal Muscle: Myopathy in nNOS Knockout Mice

    Get PDF
    Skeletal muscle nNOSΞΌ (neuronal nitric oxide synthase mu) localizes to the sarcolemma through interaction with the dystrophin-associated glycoprotein (DAG) complex, where it synthesizes nitric oxide (NO). Disruption of the DAG complex occurs in dystrophinopathies and sarcoglycanopathies, two genetically distinct classes of muscular dystrophy characterized by progressive loss of muscle mass, muscle weakness and increased fatigability. DAG complex instability leads to mislocalization and downregulation of nNOSΞΌ; but this is thought to play a minor role in disease pathogenesis. This view persists without knowledge of the role of nNOS in skeletal muscle contractile function in vivo and has influenced gene therapy approaches to dystrophinopathy, the majority of which do not restore sarcolemmal nNOSΞΌ. We address this knowledge gap by evaluating skeletal muscle function in nNOS knockout (KN1) mice using an in situ approach, in which the muscle is maintained in its normal physiological environment. nNOS-deficiency caused reductions in skeletal muscle bulk and maximum tetanic force production in male mice only. Furthermore, nNOS-deficient muscles from both male and female mice exhibited increased susceptibility to contraction-induced fatigue. These data suggest that aberrant nNOSΞΌ signaling can negatively impact three important clinical features of dystrophinopathies and sarcoglycanopathies: maintenance of muscle bulk, force generation and fatigability. Our study suggests that restoration of sarcolemmal nNOSΞΌ expression in dystrophic muscles may be more important than previously appreciated and that it should be a feature of any fully effective gene therapy-based intervention

    Breath Formate Is a Marker of Airway S-Nitrosothiol Depletion in Severe Asthma

    Get PDF
    -nitrosothiols (SNOs), a class of endogenous airway smooth muscle relaxants. This deficiency results from increased activity of an enzyme that both reduces SNOs to ammonia and oxidizes formaldehyde to formic acid, a volatile carboxylic acid that is more easily detected in exhaled breath condensate (EBC) than SNOs. We therefore hypothesize that depletion of airway SNOs is related to asthma pathology, and breath formate concentration may be a proxy measure of SNO catabolism. (rβ€Š=β€Šβˆ’0.39, pβ€Š=β€Š0.002, asthmatics only), and positively correlated with the NO-derived ion nitrite (rβ€Š=β€Š0.46, p<0.0001) as well as with total serum IgE (rβ€Š=β€Š0.28, pβ€Š=β€Š0.016, asthmatics only). Furthermore, formate was not significantly correlated with other volatile organic acids nor with inhaled corticosteroid dose.-nitrosothiols

    After-hours colorectal surgery: a risk factor for anastomotic leakage

    Get PDF
    __Purpose:__ This study aims to increase knowledge of colorectal anastomotic leakage by performing an incidence study and risk factor analysis with new potential risk factors in a Dutch tertiary referral center. __Methods:__ All patients whom received a primary colorectal anastomosis between 1997 and 2007 were selected by means of operation codes. Patient records were studied for population description and risk factor analysis. __Results:__ In total 739 patients were included. Anastomotic leakage (AL) occurred in 64 (8.7%) patients of whom nine (14.1%) died. Median interval between operation and diagnosis was 8 days. The risk for AL was higher as the anastomoses were constructed more distally (p = 0.019). Univariate analysis showed duration of surgery (p = 0.038), BMI (p = 0.001), time of surgery (p = 0.029), prophylactic drainage (p = 0.006) and time under anesthesia (p = 0.012) to be associated to AL. Multivariate analysis showed BMI greater than 30 kg/m2(p = 0.006; OR 2.6 CI 1.3-5.2) and "after hours" construction of an anastomosis (p = 0.030; OR 2.2 CI 1.1-4.5) to be independent risk factors. __Conclusion:__ BMI greater than 30 kg/m2and "after hours" construction of an anastomosis were independent risk factors for colorectal anastomotic leakage

    Right Ventricular Adaptation Is Associated with the Glu298Asp Variant of the NOS3 Gene in Elite Athletes

    Get PDF
    Nitric oxide (NO), an important endogenous pulmonary vasodilator is synthetized by the endothelial NO synthase (NOS3). Reduced NO bioavailability and thus the Glu298Asp polymorphism of NOS3 may enhance right ventricular (RV) afterload and hypertrophic remodeling and influence athletic performance. To test this hypothesis world class level athletes (water polo players, kayakers, canoeists, rowers, swimmers, n = 126) with a VO2 maximum greater than 50ml/kg/min were compared with non-athletic volunteers (n = 155). Cardiopulmonary exercise tests and cardiac magnetic resonance imaging (cMRI) were performed to determine structural or functional changes. Genotype distribution of the NOS3 Glu298Asp polymorphism was not affected by gender or physical performance. Cardiac MRI showed increased stroke volume with eccentric hypertrophy in all athletes regardless of their genotype. However, the Asp allelic variant carriers had increased RV mass index (32+/-6g versus 27+/-6g, p<0.01) and larger RV stroke volume index (71+/-10ml versus 64+/-10ml, p<0.01) than athletes with a Glu/Glu genotype. Genotype was not significantly associated with athletic performance. In the non-athletic group no genotype related differences were detected. The association between the NOS3 Glu298Asp polymorphism and RV structure and dimension in elite athletes emphasizes the importance of NOS3 gene function and NO bioavailability in sport related cardiac adaptation

    Randomized trial of achieving healthy lifestyles in psychiatric rehabilitation: the ACHIEVE trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Overweight and obesity are highly prevalent among persons with serious mental illness. These conditions likely contribute to premature cardiovascular disease and a 20 to 30 percent shortened life expectancy in this vulnerable population. Persons with serious mental illness need effective, appropriately tailored behavioral interventions to achieve and maintain weight loss. Psychiatric rehabilitation day programs provide logical intervention settings because mental health consumers often attend regularly and exercise can take place on-site. This paper describes the Randomized Trial of Achieving Healthy Lifestyles in Psychiatric Rehabilitation (ACHIEVE). The goal of the study is to determine the effectiveness of a behavioral weight loss intervention among persons with serious mental illness that attend psychiatric rehabilitation programs. Participants randomized to the intervention arm of the study are hypothesized to have greater weight loss than the control group.</p> <p>Methods/Design</p> <p>A targeted 320 men and women with serious mental illness and overweight or obesity (body mass index β‰₯ 25.0 kg/m<sup>2</sup>) will be recruited from 10 psychiatric rehabilitation programs across Maryland. The core design is a randomized, two-arm, parallel, multi-site clinical trial to compare the effectiveness of an 18-month behavioral weight loss intervention to usual care. Active intervention participants receive weight management sessions and physical activity classes on-site led by study interventionists. The intervention incorporates cognitive adaptations for persons with serious mental illness attending psychiatric rehabilitation programs. The initial intensive intervention period is six months, followed by a twelve-month maintenance period in which trained rehabilitation program staff assume responsibility for delivering parts of the intervention. Primary outcomes are weight loss at six and 18 months.</p> <p>Discussion</p> <p>Evidence-based approaches to the high burden of obesity and cardiovascular disease risk in person with serious mental illness are urgently needed. The ACHIEVE Trial is tailored to persons with serious mental illness in community settings. This multi-site randomized clinical trial will provide a rigorous evaluation of a practical behavioral intervention designed to accomplish and sustain weight loss in persons with serious mental illness.</p> <p>Trial Registration</p> <p>Clinical Trials.gov NCT00902694</p

    What the radiologist needs to know about the diabetic patient

    Get PDF
    Diabetes mellitus (DM) is recognised as a major health problem. Ninety-nine percent of diabetics suffer from type 2 DM and 10% from type 1 and other types of DM. The number of diabetic patients worldwide is expected to reach 380 millions over the next 15Β years. The duration of diabetes is an important factor in the pathogenesis of complications, but other factors frequently coexisting with type 2 DM, such as hypertension, obesity and dyslipidaemia, also contribute to the development of diabetic angiopathy. Microvascular complications include retinopathy, nephropathy and neuropathy. Macroangiopathy mainly affects coronary arteries, carotid arteries and arteries of the lower extremities. Eighty percent of deaths in the diabetic population result from cardiovascular incidents. DM is considered an equivalent of coronary heart disease (CHD). Stroke and peripheral artery disease (PAD) are other main manifestations of diabetic macroangiopathy. Diabetic cardiomyopathy (DC) represents another chronic complication that occurs independently of CHD and hypertension. The greater susceptibility of diabetic patients to infections completes the spectrum of the main consequences of DM. The serious complications of DM make it essential for physicians to be aware of the screening guidelines, allowing for earlier patient diagnosis and treatment

    The Blood Pressure "Uncertainty Range" – a pragmatic approach to overcome current diagnostic uncertainties (II)

    Get PDF
    A tremendous amount of scientific evidence regarding the physiology and physiopathology of high blood pressure combined with a sophisticated therapeutic arsenal is at the disposal of the medical community to counteract the overall public health burden of hypertension. Ample evidence has also been gathered from a multitude of large-scale randomized trials indicating the beneficial effects of current treatment strategies in terms of reduced hypertension-related morbidity and mortality. In spite of these impressive advances and, deeply disappointingly from a public health perspective, the real picture of hypertension management is overshadowed by widespread diagnostic inaccuracies (underdiagnosis, overdiagnosis) as well as by treatment failures generated by undertreatment, overtreatment, and misuse of medications. The scientific, medical and patient communities as well as decision-makers worldwide are striving for greatest possible health gains from available resources. A seemingly well-crystallised reasoning is that comprehensive strategic approaches must not only target hypertension as a pathological entity, but rather, take into account the wider environment in which hypertension is a major risk factor for cardiovascular disease carrying a great deal of our inheritance, and its interplay in the constellation of other, well-known, modifiable risk factors, i.e., attention is to be switched from one's "blood pressure level" to one's absolute cardiovascular risk and its determinants. Likewise, a risk/benefit assessment in each individual case is required in order to achieve best possible results. Nevertheless, it is of paramount importance to insure generalizability of ABPM use in clinical practice with the aim of improving the accuracy of a first diagnosis for both individual treatment and clinical research purposes. Widespread adoption of the method requires quick adjustment of current guidelines, development of appropriate technology infrastructure and training of staff (i.e., education, decision support, and information systems for practitioners and patients). Progress can be achieved in a few years, or in the next 25 years

    Insulin resistance, lipotoxicity, type 2 diabetes and atherosclerosis: the missing links. The Claude Bernard Lecture 2009

    Get PDF
    Insulin resistance is a hallmark of type 2 diabetes mellitus and is associated with a metabolic and cardiovascular cluster of disorders (dyslipidaemia, hypertension, obesity [especially visceral], glucose intolerance, endothelial dysfunction), each of which is an independent risk factor for cardiovascular disease (CVD). Multiple prospective studies have documented an association between insulin resistance and accelerated CVD in patients with type 2 diabetes, as well as in non-diabetic individuals. The molecular causes of insulin resistance, i.e. impaired insulin signalling through the phosphoinositol-3 kinase pathway with intact signalling through the mitogen-activated protein kinase pathway, are responsible for the impairment in insulin-stimulated glucose metabolism and contribute to the accelerated rate of CVD in type 2 diabetes patients. The current epidemic of diabetes is being driven by the obesity epidemic, which represents a state of tissue fat overload. Accumulation of toxic lipid metabolites (fatty acyl CoA, diacylglycerol, ceramide) in muscle, liver, adipocytes, beta cells and arterial tissues contributes to insulin resistance, beta cell dysfunction and accelerated atherosclerosis, respectively, in type 2 diabetes. Treatment with thiazolidinediones mobilises fat out of tissues, leading to enhanced insulin sensitivity, improved beta cell function and decreased atherogenesis. Insulin resistance and lipotoxicity represent the missing links (beyond the classical cardiovascular risk factors) that help explain the accelerated rate of CVD in type 2 diabetic patients
    • …
    corecore