2 research outputs found

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∌99% of the euchromatic genome and is accurate to an error rate of ∌1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Production of α-amylase from Streptomyces sp. SLBA-08 strain using agro-industrial by-products

    No full text
    Approximately 1.5 trillion tons are the estimated yearly biomass production, making it an essentially unlimited source of raw material for environmentally friendly and biocompatible products transformed by microorganism, specially fungi and actinomycetes. Several lignocellulosic residues, such as sisal waste and sugarcane bagasse contain starch in their structures which could become important sources for the production of amylases. This study evaluated the production of amylolytic enzymes using Streptomyces sp. SLBA-08 strain, isolated from a semi-arid soil, according to their ability to grow on soluble starch as the sole carbon source. The effect of the carbon source (sisal waste and sugarcane bagasse) on α-amylase production was studied using submerged cultivations at 30 ÂșC. The highest level of α-amylase activity corresponded to 10.1 U. mL-1 and was obtained using sisal waste (2.7%) and urea (0.8%) in submerged fermentation after 3 days of cultivation. The partial characterization showed the best α-amylase activity at 50ÂșC and pH 7.0. These results are of great importance for the use of sisal waste as a substrate for biotechnological proposes
    corecore