2,024 research outputs found

    Reaching the hydrodynamic regime in a Bose-Einstein condensate by suppression of avalanche

    Full text link
    We report the realization of a Bose-Einstein condensate (BEC) in the hydrodynamic regime. The hydrodynamic regime is reached by evaporative cooling at a relative low density suppressing the effect of avalanches. With the suppression of avalanches a BEC containing 120.10^6 atoms is produced. The collisional opacity can be tuned from the collisionless regime to a collisional opacity of more than 3 by compressing the trap after condensation. In the collisional opaque regime a significant heating of the cloud at time scales shorter than half of the radial trap period is measured. This is direct proof that the BEC is hydrodynamic.Comment: Article submitted for Phys. Rev. Letters, 6 figure

    Cross-linguistic views of gesture usage

    Get PDF
    People have stereotypes about gesture usage. For instance, speakers in East Asia are not supposed to gesticulate, and it is believed that Italians gesticulate more than the British. Despite the prevalence of such views, studies that investigate these stereotypes are scarce. The present study examined peopleÕs views on spontaneous gestures by collecting data from five different countries. A total of 363 undergraduate students from five countries (France, Italy, Japan, the Netherlands and USA) participated in this study. Data were collected through a two-part questionnaire. Part 1 asked participants to rate two characteristics of gesture: frequency and size of gesture for 13 different languages. Part 2 asked them about their views on factors that might affect the production of gestures. The results showed that most participants in this study believe that Italian, Spanish, and American English speakers produce larger gestures more frequently than other language speakers. They also showed that each culture group, even within Europe, put weight on a slightly different aspect of gestures

    Large atom number Bose-Einstein condensate of sodium

    Get PDF
    We describe the setup to create a large Bose-Einstein condensate containing more than 120x10^6 atoms. In the experiment a thermal beam is slowed by a Zeeman slower and captured in a dark-spot magneto-optical trap (MOT). A typical dark-spot MOT in our experiments contains 2.0x10^10 atoms with a temperature of 320 microK and a density of about 1.0x10^11 atoms/cm^3. The sample is spin polarized in a high magnetic field, before the atoms are loaded in the magnetic trap. Spin polarizing in a high magnetic field results in an increase in the transfer efficiency by a factor of 2 compared to experiments without spin polarizing. In the magnetic trap the cloud is cooled to degeneracy in 50 s by evaporative cooling. To suppress the 3-body losses at the end of the evaporation the magnetic trap is decompressed in the axial direction.Comment: 11 pages, 12 figures, submitted to Review Of Scientific Instrument

    Efficient subgroup exponentiation in quadratic and sixth degree extensions

    Get PDF
    This paper describes several speedups for computation in the order p + 1 subgroup of F*(p2) and the order p2 - p + 1 subgroup of F*(p6). These results are in a way complementary to LUC and XTR, where computations in these groups are sped up using trace maps. As a side result, we present an efficient method for XTR with p ≡ 3 mod

    Speeding up XTR

    Get PDF

    A gauge invariant and string independent fermion correlator in the Schwinger model

    Get PDF
    We introduce a gauge invariant and string independent two-point fermion correlator which is analyzed in the context of the Schwinger model (QED_2). We also derive an effective infrared worldline action for this correlator, thus enabling the computation of its infrared behavior. Finally, we briefly discuss possible perspectives for the string independent correlator in the QED_3 effective models for the normal state of HTc superconductors.Comment: 14 pages, LaTe

    Discrete logarithm variants of VSH

    Get PDF
    Recent attacks on standardised hash functions such as SHA1 have reawakened interest in design strategies based on techniques common in provable security. In presenting the VSH hash function, a design based on RSA-like modular exponentiation, the authors introduce VSH-DL, a design based on exponentiation in DLP-based groups. In this article we explore a variant of VSH-DL that is based on cyclotomic subgroups of finite fields; we show that one can trade-off performance against bandwidth by using known techniques in such groups. Further, we investigate a variant of VSH-DL based on elliptic curves and extract a tighter reduction to the underlying DLP in comparison to the original VSH-DL proposa
    • …
    corecore