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Abstract. Recent attacks on standardised hash functions such as SHA1 have
reawakened interest in design strategies based on techniques common in prov-
able security. In presenting the VSH hash function, a designbased on RSA-like
modular exponentiation, the authors introduce VSH-DL, a design based on expo-
nentiation in DLP-based groups. In this article we explore avariant of VSH-DL
that is based on cyclotomic subgroups of finite fields; we showthat one can trade-
off performance against bandwidth by using known techniques in such groups.
Further, we investigate a variant of VSH-DL based on elliptic curves and extract
a tighter reduction to the underlying DLP in comparison to the original VSH-DL
proposal.
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1 Introduction

Hash function design Hash functions can be considered, together with block ciphers,
to be the core primitives on which modern applied cryptography is based. The design
of block ciphers is guided by a fairly mature and well understood background, see for
example linear [14] and differential [3] cryptanalysis andthe wide-trail design strategy
of the AES [7]. In contrast, standardised hash functions such as SHA1 are constructed
using somewhat ad-hoc techniques and they are essentially derived from the same fam-
ily. This fact has, in part, contributed to a number of recentcollision attacks against
designs including SHA1 [20, 21].

Ideally, a hash function with output lengthn is a parameterised, deterministic func-
tion H : {0, 1}∗ → {0, 1}n that takes an arbitrary length bitstring and maps it to a
bitstring of lengthn. A good hash function satisfies several properties, the three most
important of which are stated informally below.

1st-Preimage resistanceGiven a random imagex ∈ {0, 1}n, it should take time≈ 2n

to findm ∈ {0, 1}∗ such thatH(m) = x.
2nd-Preimage resistanceGiven a ‘random’m ∈ {0, 1}∗, it should take time≈ 2n to

findm′ ∈ {0, 1}∗ such thatH(m) = H(m′) andm 6= m′.
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Collision resistance It should take time≈ 2n/2 to find m,m′ ∈ {0, 1}∗ such that
H(m) = H(m′), yetm 6= m′.

Since generic black box attacks are known that find collisions in time≈ 2n/2 or preim-
ages in time≈ 2n, the above requirements are very strong. In many scenarios it suffices
to achieve a relaxed notion of collision resistance, in the sense that attackers who can
invest only time2k cannot find collisions, where possibly the output lengthn is larger
than2k. Thus, these hash functions might not strictly satisfy the standard security no-
tion, even though collision resistance may provably be linked to a well studied hard
problem, using the type of exact reduction also known from provable security. The
tightness of the reduction and our belief or current understanding of the hardness of
the underlying problem then lead to a parameter choice for which the resulting hash
function has the desired collision resistance.

Hash functions based on modular exponentiationOne of the first provably secure
collision resistant hash functions is based on exponentiation modulo an RSA modulus,
that isH(m) = xm mod N wherem is the message,N is the RSA modulus andx is
some predefined value inZ∗

N . If m andm′ form a collision such thatH(m) = H(m′),
thenxm−m′

= 1 mod N which implies that(m −m′) is a multiple of the order ofx.
This order will necessarily be a divisor ofφ(N) and if certain conditions hold, knowing
any (nonzero) multiple of the order ofx suffices to factorN in deterministic polynomial
time. Note that there is no restriction on the length ofm which means that there is no
need for Merkle-Damgård [8, 15] type constructions.

This scheme was recently extended by Contini et al. [6] who essentially propose to
use multi-exponentiation for the compression function instead of single exponentiation,
thus obtaining an improvement in performance by processingmore message bits at the
same time. Letpi be thei-th prime number, fori = 1, . . . , k, where the product of
thek primes should be smaller than the RSA modulus. A messagem is then split up
into l blocksMi of equal length and the hash is computed as the multi-exponentiation
H(m) =

∏
i p

Mi

i mod N . An additional requirement is that the total bitlength of the
messagem is smaller than2k.

One of the disadvantages of VSH is the need for a secret RSA-modulusN . Someone
who knows how to factorN can construct collisions easily. A side-effect of this trapdoor
against collision resistance is that the modified Cramer-Shoup signature scheme [6]
based on VSH does not provide non-repudiation as one might expect (cf. ‘Creating Col-
lisions’ [6, p. 171]). Another disadvantage is the relatively large output length, namely
the size of the RSA modulus. This means that to provide80-bit security, one needs
to use a hash function outputting approximately1024 bits, rather than the desired160
bits needed to thwart generic birthday attacks. To address these problems, Contini et
al. mentioned the possibility of building VSH-DL, a hash function based on multi-
exponentiation in DLP-based groups allowing short representations, such as elliptic
curves or cyclotomic subgroups (allowing trace or torus-based methods). This design
extends the corpus of previous work on DLP based hash functions, see [1, 2] for exam-
ple.
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Computation in finite field extensions The possibility to use finite fields with exten-
sion degree higher than one for public key cryptography has been known since the birth
of public-key cryptography. However, for a long time nobodypaid much attention to
the subject since it was unclear whether the higher extension degree would offer any
significant advantage over prime fields. It was not until Lenstra and Verheul showed
the potential of working in a smaller subgroup of a larger field using their trace-based
method called XTR [13] that interest increased.

Since then, Stam and Lenstra [19] showed how to efficiently work in the cyclo-
tomic subgroup of a degree six extension field (provided thatthe characteristic satisfies
a mild congruency relation), and Rubin and Silverberg [16] showed how to compress
and decompress elements in this same subgroup using the theory of algebraic tori. The
method of Rubin and Silverberg, called CEILIDH, differs from XTR in that compres-
sion is injective allowing full and exact decompression (inXTR conjugates are mapped
to the same element). The downside of CEILIDH is that it is only a compression and
decompression mechanism: it does not support direct computation on the compressed
elements. Efficient arithmetic is still possible though, for instance by the method devel-
oped by Stam and Lenstra or the more involved hybrid methods by Granger et al. [10].

Main contributions Since methods known from the study of arithmetic and schemes
using cyclotomic subgroups can provide computational efficiency and reduced band-
width due to their compression properties, it is a natural question to ask to what extent
they can be used to implement VSH-DL. To address this question, in this paper we in-
vestigate VSH-DL type schemes based on the cyclotomic subgroup of a sixth degree
extension field and on elliptic curves.

Such schemes provide natural efficiency in terms of bandwidth which leads to a
smaller hash-output without compromising security against collision attacks; through
an experimental implementation we reason that this benefit is balanced against de-
creased performance compared to the original VSH-DL proposal. We do not make any
claims about other security properties of our proposed hashfunctions, although it is
easy to see that finding preimages is at least as hard as findinga collision. Thus it is
possible to pick a (longer) output length of the hash function such that one also has the
desired level of security against these two attacks. We believe that in many applications
the level of security against collision attacks and preimage attacks can be set the same.
Because our hash functions essentially depend onn > 2k, it is not recommended to
truncate the output of the hash function (cf. [17]).

The paper is organised as follows. After our introduction ofVSH in Section 2,
we explore the possibility to base a hash function on a problem related to the discrete
logarithm problem in the cyclotomic subgroup of a sixth degree extension field in Sec-
tion 3, where we achieve a compression by a factor of three which represents a trade-off
against decreased performance versus the original VSH-DL under a similar assumption.
In Section 4 we discuss the possibility to use elliptic curves over prime fields. In that
case the collision resistance of the hash function can be based directly on ECDLP. Fi-
nally we present some experimental results and analysis in Section 5 before concluding
in Section 6.
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2 VSH and VSH-DL

Contini et al. [6] define and analyse a hash function called Very Smooth Hash (VSH),
which is a multi-exponentiation generalisation of the wellknown RSA-based hash.
They write down the multi-exponentiation as a square-and-repeated-multiplyalgorithm,
where they consider the processing ofk bits (Step 5 in Algorithm 1 below) as a com-
pression primitive and view the full compression function as repeated application of
this compression primitive, which allows the computation of the hash function in a
streaming fashion. Recall that fori ∈ Z>0, we letpi is thei-th prime number.

Algorithm 1: VSH compression function [6].

LetN be an RSA modulus, let the block lengthk be the largestk for which
∏k

i=1 pi <

N . The VSH compression functionHV SH : {0, 1}<2k

→ Z
∗
N is defined as follows for

anℓ-bit messagem consisting of bitsm1,m2, . . . ,mℓ, whereℓ < 2k.

1. [Initialise] Setx0 ← 1, L ← ⌈ ℓ
k ⌉ andj ← 0.

2. [Padding] Setmi ← 0 for ℓ < i ≤ Lk.
3. [Merkle-Damgård Strengthening] Letℓ =

∑k
i=1 ℓi2

i−1 with ℓi ∈ {0, 1} be the
binary representation of the message lengthℓ. SetmLk+i ← ℓi for 0 < i ≤ k.

4. [Finished] If j = L+ 1 terminate with outputxL+1.
5. [Hash next block] Setxj+1 ← x2

j ×
∏k

i=1 p
mj·k+i

i (mod N).
6. [Increasej] Increasej by one. Go back to Step 4.

It is not too hard to see that if we defineMi =
∑L

j=0 2L−jmjk+i, taking into account
the padding and the strengthening, then the hash is computedas the multi-exponentiation
H(m) =

∏
i p

Mi

i mod N . In particular this means that one might be able to achieve
some speedups by using techniques known from the theory of addition chains.

Contini et al. mention precomputing products of primes: indeed, if k primes (or
bases) are given and a small positive integerb dividesk, we can partition the bases in
k/b sets ofb primes each and for each set precompute all2b products of the different
primes in that set. During the actual hashing bits are processed in chunks ofb bits so that
only k/b multiplications will be needed to processk bits of message (this is essentially
a simplified version of Pippenger’s algorithm). Contini et al. observe that instead of
using precomputed products of primes for chunks of bits, onecan also use fresh primes
instead. Although this leads to a different hash function, called Fast VSH, it is based on
the same hardness assumption as standard VSH but, as the namesuggests, considerably
faster (also compared to VSH with precomputation). A full description can be found in
Appendix A.

The collision resistance of VSH can be reduced to the VSSR problem.

Definition 2 (VSSR: Very Smooth number nontrivial modular Square Root [6, Def. 3])
LetN be the product of two unknown primes of approximately the same size and let
k ≤ (logN)c. VSSR is the following problem: GivenN , findx ∈ Z

∗
N such thatx2 =∏k

i=1 p
ei

i and at least one ofe1, . . . , ek is odd.

Contini et al. note that, given the existing known factoringalgorithms, it seems as hard
to solve the VSSR problem as it is to factorN (though they base their analysis on a
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more conservative relation). They also define a discrete loganalogue to VSSR leading
to VSH-DL. An important advantage of VSH-DL over VSH is the lack of a trapdoor.

Definition 3 (VSDL: Very Smooth number Discrete Log [6, Def. 4]) Letp, q be primes
with p = 2q + 1 and letk ≤ (log p)c. VSDL is the following problem: givenp, find in-
tegerse1, e2, . . . , ek such that2e1 ≡

∏k
i=2 p

ei

i mod p with |ei| < q for i = 1, 2, . . . , k,
and at least one ofe1, e2, . . . , ek is non-zero (wherepi is to be understood to be thei-th
prime number).

Algorithm 4: VSH-DL compression function.

Let p be anS-bit prime of form2q + 1 for prime q, let k be a fixed integer length,
typically k ≈ S/ logS. The VSH-DL compression functionHDL : {0, 1}<(S−2)k →
Z
∗
p is defined as follows for anℓ-bit messagem consisting of bitsm1,m2, . . . ,mℓ, with

ℓ < (S − 2)k.

1. [Initialise] Setx0 ← 1, L ← ⌈ ℓ
k ⌉ andj ← 0.

2. [Padding] Setmi ← 0 for ℓ < i ≤ Lk.
3. [Merkle-Damgård Strengthening] Letℓ =

∑k
i=1 ℓi2

i−1 with ℓi ∈ {0, 1} be the
binary representation of the message lengthℓ. SetmLk+i ← ℓi for 0 < i ≤ k.

4. [Finished] If j = L+ 1 terminate with outputxL+1.
5. [Hash next block] Setxj+1 ← x2

j ×
∏k

i=1 p
mj·k+i

i (mod p).
6. [Increasej] Increasej by one. Go back to Step 4.

3 A Cyclotomic Subgroup Variant of VSH-DL

We begin with a brief overview of the mathematics underlyingCEILIDH and XTR. This
overview is specifically tailored to our needs, for a more general introduction see [9]
and the references contained therein.

Let p be a prime and letFp denote a finite field of orderp andFp6 a sixth degree
extension thereof. The multiplicative groupF

∗
p6 is cyclic of orderp6 − 1, which factors

as(p2−p+1)(p2+p+1)(p+1)(p−1). LetG be the unique subgroup of orderp2−p+1
in F

∗
p6 . We callG the cyclotomic subgroup ofF∗

p6 . Alternatively, it can be regarded as a
specific algebraic torus of dimension 2 overFp. It is argued [12] that the computational
complexity of the discrete logarithm problem inF

∗
p6 resides in this subgroupG of order

p2 − p + 1, since the subgroups of order dividing(p2 + p + 1)(p + 1)(p − 1) can be
efficiently embedded in proper subfields ofF

∗
p6 , thus allowing to run a sub-exponential

algorithm in the smaller field.
Using a standard representation inFp6 consumes≈ 6 log p bits which seems waste-

ful given that there are only≈ p2 elements inG. This problem can be solved using
either XTR [13] or CEILIDH [16]. With XTR, the trace map

Tr : Fp6 → Fp2 : x→ xp4

+ xp2

+ x

is used to compress an element inG to an element inFp2 . This map is not injective;
since conjugates overFp2 map to the same value inFp2 it is essentially 3-to-1. One of
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the significant advantages of XTR is that it is possible to work directly with compressed
elements when performing an exponentiation. Unfortunately, this method does not gen-
eralise very well to multi-exponentiation on more than two bases which makes XTR
unsuitable for direct use in a VSH-DL variant.

CEILIDH is an alternative to XTR that offers only compression; that is, one cannot
compute directly with compressed elements. Formally, CEILIDH is a bijection between
G\{a} and(Fp)

2\V (f), wherea is some particular element ofG andV (f) is a well-
defined subset of(Fp)

2 (the notationV (f) stems from the fact that it is a variety defined
by a single polynomial). It is straightforward to extend CEILIDH into an injection from
G to (Fp)

2. Clearly, given any collision-resistant hash function, applying an injection to
the result is not going to reduce its collision resistance.

One of the advantages of VSH-DL as described by Contini et al.is its use of small
elementspi. When we work directly with elements inG, there do not seem to be ele-
ments that are as efficient to work with. Since each group element is represented by six
base field elements and the order of the group isp2 − p + 1 one can prescribe at most
two base field elements to be small, the other four will followand be of normal size.
However, an alternative presents itself by not working withelements inG, but rather
elements in the full fieldFp6 and only map toG at the very end through powering by
(p3 − 1)(p+ 1), i.e. the cofactor ofG in F

∗
p6 ). Thus our hash function will be

Ceilidh((
∏

i

hMi

i )(p
3−1)(p+1))

for suitably chosenhi ∈ F
∗
p6 .

In the following we will motivate this approach by showing that, when the elements
hi are chosen uniformly at random and then somehow replaced by asmaller sibling
in the same coset (under exponentiation with the cofactor ofG), the hash function is
collision-resistant if the discrete logarithm problem in (a subgroup of)G is hard. Thus,
contrary to the original VSH-DL, we reduce from a standard discrete logarithm as-
sumption. Our proof uses a slightly more general notation than as above. We note that
the order ofG itself need not be prime, although to provide collision resistance the
size ofG’s largest DLP-hard subgroup of prime order will be relevantfor determining
the maximal allowable message length. Our reduction is similar to that of Bellare and
Micciancio [2], but tighter because we reduce from the DLP ina prime order subgroup.

Definition 5 (DLP) Let Gq be a finite cyclic group of known prime orderq and with
generatorf . The discrete logarithm problem inGq is to find, giveny drawn uniformly
at random fromGq, the unique value0 ≤ x < q such thaty = fx.

Definition 6 (k-modified DLP) LetH be a finite cyclic group with generatorh. Let G
be a subgroup ofH with generatorg = h|H|/|G|. Letψ : H → H be a map such that
ψ(hi)

|H|/|G| = (hi)
|H|/|G| for all hi ∈ H. Thek-modified discrete logarithm problem

for (H,G, ψ) is to find, givenhi drawn uniformly at random fromH for i = 1, . . . , k, a
nonzero solution(e1, . . . , ek) ∈ [0, q)k of

(

k∏

i=1

ψ(hi)
ei)|H|/|G| = 1
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Theorem 7 Assumeq divides|G|, but q2 does not divide|H| and thatk > 1. An at-
tacker that solves thek-modified discrete logarithm problem for(H,G, ψ) in timet with
probability ǫ can be used to solve the discrete logarithm problem inGq ⊆ G in time
t + t′ with probability ǫ − 1/q, wheret′ is essentially the time to perform ak-fold
double exponentiation inH.

Proof:
Giveny ∈ Gq, we need to findx such thatfx = y with the help of an attacker that

solves thek-modified discrete logarithm problem. Leth1 = ybihai for i = 1, . . . , k,
where theai andbi are drawn uniform at random from[0, |H|). As a result thehi are
distributed uniformly as expected by thek-modified DLP attacker, so on input of these
hi the attacker will, with probabilityǫ, return(e1, . . . , ek) such that

(
k∏

i=1

ψ(ybihai)ei)|H|/|G| = 1

hence
g

P

k
i=1

aiei = y−(|H|/|G|)
P

k
i=1

biei .

Note thaty = fx for some (yet unkown) value of0 ≤ x < q and that, w.l.o.g.,
f = g|G|/q. Sinceg is a generator of|G|, this implies that

k∑

i=1

aiei = −x(|H|/q)

k∑

i=1

biei mod |G|

and becauseq divides|G| also

k∑

i=1

aiei = −x(|H|/q)

k∑

i=1

biei mod q .

Now we can computex if (|H|/q)
∑k

i=1 biei 6= 0 mod q. Sinceq2 does not divide
|H|, we know that|H|/q is invertible moduloq, so we need to show that

∑k
i=1 biei 6=

0 mod q with probability at most1/q.
Because, given anyhi ∈ H and0 ≤ bi < q, there is exactly oneai such that

hi = haiybi , it follows that the adversary given thehi has no Shannon information on
bi when announcing theei. Consequently, unless allei are congruent to0 moduloq
(which is not allowed by the restrictions on theei),

∑k
i=1 biei is uniformly randomly

distributed moduloq, so the probability of it being0 mod q is 1/q.
Q.E.D.

Algorithm 8: Modified VSH-DL compression function.

Let H be a finite cyclic group of known, factored order and generator h. Let G be
a subgroup ofH with generatorg = h|H|/|G|. Let q be a prime dividing|G| but not
|H|/q. Let ψ : H → H be a map such thatψ(hi)

|H|/|G| = (hi)
|H|/|G| for all hi ∈ H.
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Let Compress : G→ R be an efficiently computable injection. Letk be a fixed integer
length such that(⌊log2 q⌋ − 1)k < 2k. The modified VSH-DL compression function
HMDL : {0, 1}≤(⌊log2 q⌋−1)k → R is defined for anℓ-bit messagem consisting of bits
m1,m2, . . . ,mℓ with ℓ ≤ (⌊log2 q⌋ − 1)k as follows.

1. [Initialise] Setx0 ← 1, L ← ⌈ ℓ
k ⌉ andj ← 0.

2. [Padding] Setmi ← 0 for ℓ < i ≤ Lk.
3. [Merkle-Damgård Strengthening] Letℓ =

∑k
i=1 ℓi2

i−1 with ℓi ∈ {0, 1} be the
binary representation of the message lengthℓ. SetmLk+i ← ℓi for 0 < i ≤ k.

4. [Finished?] Ifj = L+ 1 terminate with outputCompress(x
|H|/|G|
L ).

5. [Hash next block] Setxj+1 ← x2
j ×

∏k
i=1 ψ(hi)

mj·k+i .
6. [Increasej] Increasej by one. Go back to Step 4.

For completeness, we note that the collision resistance of the hash function above
can be related tok-modified DLP by observing that the (implicit) map turning messages
into the relevant exponents forhi is injective on its domain (this is the reason for the
length restrictions on the message).

As mentioned before, we will instantiate Algorithm 8 withH = F
∗
p6 and G a

subgroup of orderp2 − p + 1 which has cofactor(p3 − 1)(p + 1). Moreover for
Compress we will substituteCeilidh. For efficient field arithmetic we restrict ourselves
top ≡ 2 mod 9. In this casepwill generateZ∗

9 andΦ9(x) = x6+x3+1 is irreducible in
Fp. Hence ifγ is a root ofΦ9(x) (i.e., a ninth root of unity), then(γ, γ2, γ3, γ4, γ5, γ6)
is a basis for the extension fieldFp6 = Fp[γ]. The arithmetic based on this extension
also lies at the basis of the fast implementation [10] of XTR and CEILIDH.

Let a =
∑5

j=0 ajγ
j+1 ∈ Fp6 . We are interested in finding a small representation

ψ(a) of a such that multiplication of an arbitrary field element byψ(a) will be relatively
cheap. We do this implicitly. Instead of giving a straightforward definition ofψ we show
how to sample efficiently and (almost) uniformly fromψ(F∗

p6). This is done by ensuring

thatψ(F∗
p6)(p

3−1)(p+1) gives rise to the (almost) uniform distribution overG.
We sample fromψ(F∗

p6) as follows. Drawa0 anda5 uniformly and independently
at random fromFp. Let ψ(a) = a0γ + γ2 + a5γ

6. That this works follows from the
following observation:

Lemma 9 The mapψ′ : F
2
p → G defined byψ′(a0, a5) = (a0γ+γ2+a5γ

6)(p
3−1)(p+1)

has a range of at leastp2/3 elements.

Proof: To prove the statement we will upper bound the number of collisions, that is,
sets of distinct pairs(a0, a5) and(b0, b5) such thatψ′(a0, a5) = ψ′(b0, b5). Equiva-
lently, we are counting the setsa andb of prescribed forma = a0γ + γ2 + a5γ

6 and
b = b0γ + γ2 + b5γ

6 such thata(p3−1)(p+1) = b(p
3−1)(p+1). The latter equation can be

rewritten as(ap3

b)p+1 − (abp
3

)p+1) = 0. This can be computed algebraically, giving
rise to initially six equations (one for each coordinate), but that can be simplified to

(a0 − b0)(1 + a0b0 + a5b5) = 0

(a5 − b5 + 2(a0 − b0) + a0b5 − a5b0)(1 + a0b0 + a5b5) = 0
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plus a third condition. Simultaneously satisfying the above two equations can only be
done if either(a0, a5) = (b0, b5) or if (1+a0b0+a5b5) = 0. Unless(b0, b5) = (0, 0) the
latter solution allows us substitution of eithera0 or a5 in the third and final equation to
be satisfied (and note that only(0, 0) is in the preimage ofψ′(0, 0)). This third equation
will then yield a quadratic equation in eithera0 or a5 that is only degenerate (i.e. equal
to zero) if bothb0 = 0 andb5 = 0. Since a quadratic equation over a finite field has
at most two solutions, we have shown that any preimage ofψ′ has cardinality at most
three, from which the claim follows. Q.E.D.

One can improve performance considerably by picking smalla0 anda5. The caveat
is that the security is no longer directly related to a clean DLP assumption. Our choice
will be to set(a5)i equal to 1 and let(a0)i depend oni, i.e. simply range through a
number ofa0 values that are easy to multiply with. In particular, we use(a0)i = i+ 1
for a giveni.

For completeness we note that the preimage underψ′ of 1 ∈ G in this case is
restricted toa0 = 0 or a0 = 1, which can be seen by using thata(p3−1)(p+1) = 1

is equivalent toa(p2+p+1)(p+1) ∈ F
∗
p. Moreover, if a = a0γ + γ2 + γ6 and b =

b0γ + γ2 + γ6, thena(p3−1)(p+1) = b(p
3−1)(p+1) iff a = b or a, b are in the preimage

of 1.
Thus we are insured that as long as we pick thea0 distinct and unequal to0 or 1 our

system is not obviously flawed and there is no reason to assumethat the choice of our
ψ(hi) is weak. The resulting hash function can be proven secure assuming that solving
the following, admittedly tailor-made, problem is hard:

Definition 10 (Small Element DLP) Letp be a prime congruent to2 mod 9 such that
p2 − p + 1 has at least one big prime factorq. Let γ be a ninth-root of unity and let
hi = (i+ 1)γ + γ2 + γ6 ∈ F

∗
p6 for i = 1, . . . , k. The small element discrete logarithm

problem is to find, givenp, a nonzero solution(e1, . . . , ek) ∈ [0, q)k of

(

k∏

i=1

ψ(hi)
ei)(p

3−1)(p+1) = 1 .

4 An Elliptic Curve Variant of VSH-DL

Since their introduction to cryptography by Koblitz and Miller, elliptic curves have
become ever more popular as a replacement for finite fields to base DLP-based schemes
on. This is mainly due to the fact that there is no known algorithm to solve the DLP on
a general elliptic curve faster than the generic Pollard-ρmethod. This allows one to use
curves with group sizes quadratic in the security one wishesto offer.

An immediate result of this is that to obtain2k bit security against collision-finding,
one can actually use a hash function based on VSH-DL that outputs just over2k bits
(by using affine representation and standard point compression, where theY -coordinate
is replaced by a single bit to resolve any square root ambiguity). Moreover, the com-
putations are relatively fast. In this article we concentrate on curves over prime fields,
though similar results are expected to hold for curves over binary or ternary fields.
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An elliptic curve over a prime fieldFp with p > 3 can be represented using the short
Weierstrass form

Y 2 = X3 + a4X + a6

where it is common to usea4 = −3, for example in the NIST standard curves, in
order to extract some performance benefits. The set of points(X,Y ) ∈ F

2
p satisfying

the equation above together with a point at infinity form an abelian group under the
addition operation also known as the chord-tangent process. The point at infinity serves
as group identity and the negation of a point(X,Y ) is (X,−Y ).

Optimising elliptic curve arithmetic has been the focus of alarge number of articles.
Excellent overviews are given by Brown et al.[5] and Hankerson et al.[11]. One of the
most efficient methods is the use of mixed coordinates, wherethe fixed multiplicands
are kept in affine representation but where computations aredone using the Jacobian
representation. Point doubling with the Jacobian representation costs 4 field multiplica-
tions and 4 field squarings. Adding an affinely represented point to a point in Jacobian
representation costs 8 field multiplications and 3 field squarings. The result again is in
the Jacobian representation.

One could consider the use of small pointsPi. However, it seems that only one of
the coordinates ofPi can be picked small, since the other coordinate typically follows
from the curve equation (indeed, ifa4 = −3 anda6 has full size, it is impossible for
both theX and theY -coordinate of a point on the curve to be small). It is easy to see
from [11, Algorithm 3.22] that both coordinates are used only once during the point
addition, so picking smallPi’s will reduce the cost of a point addition by at most one
field multiplication.

A possible solution to this problem is the use of a Montgomeryrepresentation.
Recently Brown [4] showed how to perform a multi-exponentiation efficiently in this
setting.

5 Experimental Results

Strategy The crucial operation in the implementation of VSH is

xj+1 ← x2
j

k∏

i=1

p
mj·k+1

i (mod n).

This product can be computed in several ways by reshuffling the order in which the
multiplications take place. One option is to start withx2

j and then multiply by the rele-
vantpi terms one by one, reducing each time. The option recommendedby Contini et
al. is to first compute the product

P =
k∏

i=1

p
mj·k+1

i

and then multiply byx2
j . Due to the choice of parameters, the productP will be smaller

than the modulusN when computed over the integers, so modular reductions are not
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slow fastb = 2 fastb = 4 fastb = 8
SHA1-160 26.29 (or 16.89 with SIMD)
VSH 632.36 622.11 370.37 277.60
VSH-DL-A 715.71 676.04 382.68 274.75
VSH-DL-B 5507.54 6244.37 3126.34 1338.18
VSH-DL-C 16080.26 11777.89 7542.05 4105.31

Table 1.A comparison between the original VSH design and three variants of VSH-DL.
Results are given in clock cycles per byte of input.

necessary. VSH relies on this feature of thepi, or small element values to enable the
construction of high performance implementations. It alsoacts as the bottleneck for
our compressed VSH-DL variants. Specifically, it is much harder to reason about how
one would delay reductions in either the cyclotomic subgroup or elliptic curve cases:
although one can attempt to construct some notion of small elements, it is difficult to
imagine how performing computation with such elements willbe as efficient as in the
original VSH case.

Results In order to evaluate the relative performance characteristics of our VSH-DL
designs versus the original proposal by Contini et al. [6], we produced some experi-
mental results using an implementation in C. Our platform for these experiments was
a 2.8Ghz Intel Pentium4; we used GCC4.0.1 to compile our implementation which
relied on NTL [18] for the underlying arithmetic. We produced an implementation of
the original VSH scheme and three variants of the VSH-DL scheme as detailed below:

VSH The original VSH scheme operates modulo an RSA numberN = pq for primes
p andq. The parametersp andq were selected such thatlog2(N) = 1024.

VSH-DL-A The first variant represents the original VSH-DL scheme of Contini et al.
by working in the group of integers modulo a primep such thatp = 2q + 1 for
some primeq. The parametersp andq were selected such thatlog2(p) = 1152.

VSH-DL-B The second variant represents the cyclotomic subgroup based VSH-DL
design as described in Section 3. It works in a groupG which is a subgroup ofF∗

p6 .
The parameterp was selected such thatlog2(p) = 192. In this implementation we
were careful to use delayed reduction techniques to improvearithmetic inG, and to
construct a dedicated multiplication function for multiplication by small elements
which have a special, sparse form.

VSH-DL-C The final variant represents the elliptic curve based VSH-DLdesign as de-
scribed in Section 4. It works in a prime subgroup of a curveE(Fp). The parameter
p was selected such thatlog2(p) = 192. We considered only random curves of the
form

E : Y 2 = X3 − 3X + a6

such that special reduction techniques such as those for Mersenne primes were not
available; one might expect an incremental improvement in performance by using
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such a parameterisation. We used Jacobian projective coordinates and a mixed-
addition strategy as is common in many point multiplicationmethods. The form of
arithmetic on the curve meant that a dedicated point addition function for addition
of small elements did not give any significant benefit.

For each variant, our parameter selection is such that the security of the resulting hash
functions is roughly equal. However, we make no attempt to toselect values ofk that
are sensible for the different variants; we usek = 131 in all cases. The results in Table 5
detail the performance of our variants; the figures quoted are clock cycles per byte of
input measured using therdtsc instruction. They do not include the cost of initialising
the hash function, for example pre-computation of any tables of small elements. We
include results, following the nomenclature of Contini et al., for both slow and fast
versions: the fast version blocks the input and uses some pre-computation to improve
performance.

Analysis Even considering incremental performance improvements byusing, for ex-
ample, Mersenne primes in the elliptic curve case, our VSH-DL variants perform at
least an order or magnitude worse than either the original VSH or VSH-DL proposals
by Contini et al. In this respect, their worth in terms of pureperformance is untenable.
This is exacerbated when one considers that hardware acceleration for modular multi-
plication as used in VSH is commonplace as a result of use in RSA; one might expect
significant performance improvements in a practical setting as a result.

However, one area of advantage which our cyclotomic subgroup variant of VSH-DL
gives is memory footprint. That is, the computation of smallfield elements is essentially
free in comparison with the computation of the small primes used in VSH. For the
figures in [6][Section 5] one can see that VSH pays a hefty price in terms of memory
real-estate to achieve the levels of performance indicatedin our results. Although the
performance is lower, our cyclotomic subgroup variant of VSH-DL requires far less
memory.

A more subtle issue is the selection of thek parameter. By increasingk, which
roughly speaking is the block size of the hash function, one can decrease the number
of squaring operations in the compression function; the number of multiplications stays
the same. The choice ofk for VSH is motivated by the need to avoid modular reductions
in computing the productP from above. In our schemes we have already highlighted
the fact that it is not easy to avoid such reductions; as such we can be more flexible in
our choice ofk.

6 Conclusion

In this article we have examined in depth the possibility to base VSH-DL on either
cyclotomic subgroups of finite fields of extension degree sixor on elliptic curves of
large prime characteristic. We concluded that for cyclotomic subgroups using CEILIDH
we can get a hash function that is about an order of magnitude slower than the original
VSH-DL proposal, secure under a slightly different assumption (due to an inevitable
redefining of what constitutes a small element), but has a compression factor that is
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three times as high. Using elliptic curves, we derive a hash function that is significantly
slower than the original VSH-DL proposal, but whose compression factor is six times as
high and its security can be directly linked to that of the standard ECDLP. In both cases
the poor performance is balanced by a potential saving in terms of memory footprint.

We reiterate that our main concern was provable collision resistance under a discrete
logarithm-like assumption. Like VSH and VSH-DL on which ourconstructions are
based, our scheme provides only collision resistance and may not be suitable to replace
a random oracle in all situations.
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A Fast VSH

Recall that fori ∈ Z>0, we letpi be thei-th prime number. LetN be an RSA mod-
ulus, letk be the block length and letb be the chunking factor. To avoid intermediate
reductions, one should ensure that

∏k
i=1 p(2b−1)i < N . Note that the Merkle-Damgård

strengthening listed below might allow collisions on messages of length greater than
2bk, but for reasonable parameter choices ofb andk this will not be an issue.

Algorithm 11: VSH compression function [6].

The VSH compression functionHV SH : {0, 1}∗ → Z
∗
N is defined as follows for an

ℓ-bit messagem consisting of bitsm1,m2, . . . ,mℓ.

1. [Padding] SetL ← ⌈ ℓ
bk ⌉ andmi ← 0 for ℓ < i ≤ Lbk.

2. [Radix Conversion] SetMi =
∑b−1

j=0mb(i−1)+j+12
j for 0 < i ≤ k.

3. [Merkle-Damgård Strengthening] Letℓ =
∑k

i=1 ℓi2
(i−1)b with ℓi ∈ {0, 2b − 1}

be the2b-ary representation of the message lengthℓ. SetMLk+i ← ℓi for 0 <
i ≤ k.

4. [Initialise Loop] Setx0 ← 1 andj ← 0.
5. [Padding] Setmi ← 0 for ℓ < i ≤ Lbk.
6. [Finished] If j = L+ 1 terminate with outputxL+1.
7. [Prepare product] SetP ←

∏k
i=1 pMi+(i−1)(2b−1) skipping thosei for which

M − i = 0.
8. [Hash next block] Setxj+1 ← x2

j × P (mod N).
9. [Increasej] Increasej by one. Go back to Step 6.
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