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Abstract. Recent attacks on standardised hash functions such as Sal&l h
reawakened interest in design strategies based on te@shagummon in prov-
able security. In presenting the VSH hash function, a delsaged on RSA-like
modular exponentiation, the authors introduce VSH-DL,sigiebased on expo-
nentiation in DLP-based groups. In this article we exploka@ant of VSH-DL
that is based on cyclotomic subgroups of finite fields; we sthawvone can trade-
off performance against bandwidth by using known techrsquesuch groups.
Further, we investigate a variant of VSH-DL based on efliptirves and extract
a tighter reduction to the underlying DLP in comparison ® d¢higinal VSH-DL
proposal.
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1 Introduction

Hash function design Hash functions can be considered, together with block cghe
to be the core primitives on which modern applied cryptobyais based. The design
of block ciphers is guided by a fairly mature and well undewsstbackground, see for
example linear [14] and differential [3] cryptanalysis ahd wide-trail design strategy
of the AES [7]. In contrast, standardised hash function stscSHA1 are constructed
using somewhat ad-hoc techniques and they are essengaiyed from the same fam-
ily. This fact has, in part, contributed to a number of recauitision attacks against
designs including SHA1 [20, 21].

Ideally, a hash function with output lengthis a parameterised, deterministic func-
tion H : {0,1}* — {0,1}™ that takes an arbitrary length bitstring and maps it to a
bitstring of lengthn. A good hash function satisfies several properties, thesthrest
important of which are stated informally below.

1st-Preimage resistanceGiven a random image € {0, 1}", it should take timex 2"
to findm € {0,1}* such that{(m) = «.

2nd-Preimage resistanceGiven a ‘random'm € {0, 1}*, it should take time= 2" to
findm’ € {0, 1}* such that{(m) = H(m’) andm # m/'.
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Collision resistance It should take time~ 2"/2 to find m,m’ € {0,1}* such that
H(m) = H(m'), yetm # m/’.

Since generic black box attacks are known that find collisiartime~ 2"/2 or preim-
ages in timex 2", the above requirements are very strong. In many scenasofices
to achieve a relaxed notion of collision resistance, in #rese that attackers who can
invest only time2* cannot find collisions, where possibly the output lengtis larger
than2k. Thus, these hash functions might not strictly satisfy tla@dard security no-
tion, even though collision resistance may provably beddko a well studied hard
problem, using the type of exact reduction also known frowvable security. The
tightness of the reduction and our belief or current undeding of the hardness of
the underlying problem then lead to a parameter choice faclwthe resulting hash
function has the desired collision resistance.

Hash functions based on modular exponentiationOne of the first provably secure
collision resistant hash functions is based on exponémiatodulo an RSA modulus,
that isH(m) = 2™ mod N wherem is the messagéy is the RSA modulus and is
some predefined value i, . If m andm’ form a collision such thaki(m) = H(m'),
thenz”™~™ = 1 mod N which implies tha{m — m’) is a multiple of the order of.
This order will necessarily be a divisor of V) and if certain conditions hold, knowing
any (nonzero) multiple of the order ofsuffices to factorfV in deterministic polynomial
time. Note that there is no restriction on the lengtmofvhich means that there is no
need for Merkle-Damgard [8, 15] type constructions.

This scheme was recently extended by Contini et al. [6] wisem$ally propose to
use multi-exponentiation for the compression functiomtaad of single exponentiation,
thus obtaining an improvement in performance by processioigg message bits at the
same time. Lep; be thei-th prime number, foi = 1,... &, where the product of
the k primes should be smaller than the RSA modulus. A messaggethen split up
into [ blocks M; of equal length and the hash is computed as the multi-expi@tien
H(m) = [[, pM mod N. An additional requirement is that the total bitlength af th
messagen is smaller thar2”.

One of the disadvantages of VSH is the need for a secret RSduusN . Someone
who knows how to factoN can construct collisions easily. A side-effect of this ttapr
against collision resistance is that the modified Crameughsignature scheme [6]
based on VSH does not provide non-repudiation as one migleioexcf. ‘Creating Col-
lisions’ [6, p. 171]). Another disadvantage is the reldiMarge output length, namely
the size of the RSA modulus. This means that to proidibit security, one needs
to use a hash function outputting approximateg4 bits, rather than the desirdd0
bits needed to thwart generic birthday attacks. To addressetproblems, Contini et
al. mentioned the possibility of building VSH-DL, a hash ¢tion based on multi-
exponentiation in DLP-based groups allowing short repriegns, such as elliptic
curves or cyclotomic subgroups (allowing trace or toruseobmethods). This design
extends the corpus of previous work on DLP based hash furgstsee [1, 2] for exam-

ple.



Computation in finite field extensions The possibility to use finite fields with exten-
sion degree higher than one for public key cryptography leas lknown since the birth
of public-key cryptography. However, for a long time nobguhid much attention to

the subject since it was unclear whether the higher extargggree would offer any

significant advantage over prime fields. It was not until tem&nd Verheul showed
the potential of working in a smaller subgroup of a largeidfiesing their trace-based
method called XTR [13] that interest increased.

Since then, Stam and Lenstra [19] showed how to efficientlykvio the cyclo-
tomic subgroup of a degree six extension field (providedttiatharacteristic satisfies
a mild congruency relation), and Rubin and Silverberg [1&]veed how to compress
and decompress elements in this same subgroup using thg tifexdgebraic tori. The
method of Rubin and Silverberg, called CEILIDH, differsftdXTR in that compres-
sion is injective allowing full and exact decompressionXifiR conjugates are mapped
to the same element). The downside of CEILIDH is that it isyamkcompression and
decompression mechanism: it does not support direct catipaton the compressed
elements. Efficient arithmetic is still possible thoughr,ifsstance by the method devel-
oped by Stam and Lenstra or the more involved hybrid methgdaranger et al. [10].

Main contributions Since methods known from the study of arithmetic and schemes
using cyclotomic subgroups can provide computationalieficy and reduced band-
width due to their compression properties, it is a naturaistjon to ask to what extent
they can be used to implement VSH-DL. To address this questidhis paper we in-
vestigate VSH-DL type schemes based on the cyclotomic suipgof a sixth degree
extension field and on elliptic curves.

Such schemes provide natural efficiency in terms of bandwidtich leads to a
smaller hash-output without compromising security agagodlision attacks; through
an experimental implementation we reason that this bergefiialanced against de-
creased performance compared to the original VSH-DL pralpt¢e do not make any
claims about other security properties of our proposed fasttions, although it is
easy to see that finding preimages is at least as hard as fiadintlision. Thus it is
possible to pick a (longer) output length of the hash fumcsioch that one also has the
desired level of security against these two attacks. Webelhat in many applications
the level of security against collision attacks and preienatjacks can be set the same.
Because our hash functions essentially depend on 2k, it is not recommended to
truncate the output of the hash function (cf. [17]).

The paper is organised as follows. After our introductionV&H in Section 2,
we explore the possibility to base a hash function on a pmbédated to the discrete
logarithm problem in the cyclotomic subgroup of a sixth aegextension field in Sec-
tion 3, where we achieve a compression by a factor of threetwieipresents a trade-off
against decreased performance versus the original VSHrdEma similar assumption.
In Section 4 we discuss the possibility to use elliptic csreger prime fields. In that
case the collision resistance of the hash function can bedbdisectly on ECDLP. Fi-
nally we present some experimental results and analysisdtid® 5 before concluding
in Section 6.



2 VSH and VSH-DL

Contini et al. [6] define and analyse a hash function calle #nooth Hash (VSH),
which is a multi-exponentiation generalisation of the walbwn RSA-based hash.
They write down the multi-exponentiation as a square-apgated-multiply algorithm,
where they consider the processingkdbits (Step 5 in Algorithm 1 below) as a com-
pression primitive and view the full compression functienrapeated application of
this compression primitive, which allows the computatidrttee hash function in a
streaming fashion. Recall that foE Z- o, we letp; is thei-th prime number.

Algorithm 1: VSH compression function [6].

Let N be an RSA modulus, let the block lendilie the largest for which Hle pi <

N. The VSH compression functidiy s : {0, 1}<2k — Z3 is defined as follows for
an/-bit messagen consisting of bitsn,, ma, . .., m, wheret < 2k,

1. [Initialise] Setzq « 1, £ « [£] andj « 0.

2. [Padding] Sein; « Ofor ¢ < i < Lk.

3. [Merkle-Damgard Strengthening] Lét=SF | ¢,2¢~1 with ¢; € {0,1} be the
binary representation of the message lerg®etm cx; < ¢; for0 < i < k.

4.  [Finished] Ifj = £ + 1 terminate with output ;.

5.  [Hash nextblock] Set;; « 7 x Hlepznj"““ (mod N).

6. [Increasej] Increasej by one. Go back to Step 4.

It is not too hard to see that if we defide; = Zf:o 2‘3*jmjk+i, taking into account
the padding and the strengthening, then the hash is comasitbd multi-exponentiation
H(m) =[], pM mod N. In particular this means that one might be able to achieve
some speedups by using techniques known from the theoryditi@dchains.

Contini et al. mention precomputing products of primes:eid, if £ primes (or
bases) are given and a small positive intdgdividesk, we can partition the bases in
k/b sets ofb primes each and for each set precomput@aproducts of the different
primes in that set. During the actual hashing bits are psazem chunks of bits so that
only k/b multiplications will be needed to procekdits of message (this is essentially
a simplified version of Pippenger’s algorithm). Contini ét@bserve that instead of
using precomputed products of primes for chunks of bits,camealso use fresh primes
instead. Although this leads to a different hash functiafied Fast VSH, it is based on
the same hardness assumption as standard VSH but, as theuggests, considerably
faster (also compared to VSH with precomputation). A fuBckption can be found in
Appendix A.

The collision resistance of VSH can be reduced to the VSSRBI@no.

Definition 2 (VSSR: Very Smooth number nontrivial modular Square RQ@¢6. 3])
Let NV be the product of two unknown primes of approximately theessize and let
k < (log N)°. VSSR is the following problem: Givéw, findx € Z% such thatz? =

15, po* and at least one of, . .. , e, is odd.

Contini et al. note that, given the existing known factoratgorithms, it seems as hard
to solve the VSSR problem as it is to factdyr (though they base their analysis on a



more conservative relation). They also define a discretei@jogue to VSSR leading
to VSH-DL. An important advantage of VSH-DL over VSH is thekaof a trapdoor.

Definition 3 (VSDL: Very Smooth number Discrete Log [6, Def. 4]) haf be primes
with p = 2¢ + 1 and letk < (logp)©. VSDL is the following problem: given find in-

tegerseq, es, . .., ex Such thae: = HfZpri mod pwith |e;| < gfori=1,2,... k,

and at least one afy, es, . . ., i IS non-zero (wherg; is to be understood to be tligh

prime number).

Algorithm 4: VSH-DL compression function.

Let p be anS-bit prime of form2q + 1 for prime ¢, let k be a fixed integer length,
typically k£ ~ S/log S. The VSH-DL compression functiol py, : {0,1}<(5=2)% _,
Zy is defined as follows for aérbit messagen consisting of bitsn, mo, . .., mg, with

L < (S —2)k.

1. [Initialise] Setzo « 1, £ « [£] andj < 0.

2. [Padding] Sein; « Ofor ¢ < i < Lk.

3. [Merkle-Damgard Strengthening] Lét= S"F  ¢,2i~1 with £; € {0,1} be the
binary representation of the message lerg®etm cx; < ¢; for0 < i < k.

4.  [Finished] Ifj = £ + 1 terminate with output ;1.

[Hash next block] Set;; «— x5 x Hlep;”j"““ (mod p).

[Increasej] Increasej by one. Go back to Step 4.

oo

3 A Cyclotomic Subgroup Variant of VSH-DL

We begin with a brief overview of the mathematics underly@igJLIDH and XTR. This
overview is specifically tailored to our needs, for a moreggahintroduction see [9]
and the references contained therein.

Letp be a prime and leff,, denote a finite field of ordey andF s a sixth degree
extension thereof. The multiplicative grotip; is cyclic of orderp® — 1, which factors
as(p?—p+1)(p*>+p+1)(p+1)(p—1). LetG be the unique subgroup of order—p+1
in IF;B. We callG the cyclotomic subgroup dﬂ‘;ﬁ. Alternatively, it can be regarded as a
specific algebraic torus of dimension 2 o It is argued [12] that the computational
complexity of the discrete logarithm problemlit); resides in this subgroup of order
p? — p + 1, since the subgroups of order dividifig? +p + 1)(p + 1)(p — 1) can be
efficiently embedded in proper subfieldslgjf;, thus allowing to run a sub-exponential
algorithm in the smaller field.

Using a standard representatiorfis consumes: 6 log p bits which seems waste-
ful given that there are onlyg p? elements inG. This problem can be solved using
either XTR [13] or CEILIDH [16]. With XTR, the trace map

p* p’
Tr:Fpe — Fpeix—a? +2P +o

is used to compress an elementGrto an element irF,.. This map is not injective;
since conjugates ovét,. map to the same value If,: it is essentially 3-to-1. One of



the significant advantages of XTR is that it is possible tolkndbrectly with compressed

elements when performing an exponentiation. Unfortugatteils method does not gen-
eralise very well to multi-exponentiation on more than twasés which makes XTR
unsuitable for direct use in a VSH-DL variant.

CEILIDH is an alternative to XTR that offers only compressithat is, one cannot
compute directly with compressed elements. Formally, @BH.is a bijection between
G\{a} and(F,)?\V (f), wherea is some particular element &andV (f) is a well-
defined subset dff,,)? (the notatiorV/ ( f) stems from the fact that it is a variety defined
by a single polynomial). It is straightforward to extend CEIH into an injection from
Gto (F,)2. Clearly, given any collision-resistant hash functiorplgjng an injection to
the result is not going to reduce its collision resistance.

One of the advantages of VSH-DL as described by Contini & &bk use of small
elements;. When we work directly with elements i@, there do not seem to be ele-
ments that are as efficient to work with. Since each groupetes represented by six
base field elements and the order of the groyg is- p + 1 one can prescribe at most
two base field elements to be small, the other four will follamd be of normal size.
However, an alternative presents itself by not working vatbments inG, but rather
elements in the full field",s and only map tdG at the very end through powering by
(p® —1)(p+ 1), i.e. the cofactor o6 in I7s)- Thus our hash function will be

Ceilidh((H h;‘/[i)(pgfl)(erl))

for suitably chosem; € F*;.

In the following we will motivate this approach by showin@gthwhen the elements
h; are chosen uniformly at random and then somehow replacedsbyadler sibling
in the same coset (under exponentiation with the cofactds)pthe hash function is
collision-resistant if the discrete logarithm problem ansubgroup of{; is hard. Thus,
contrary to the original VSH-DL, we reduce from a standarscrbte logarithm as-
sumption. Our proof uses a slightly more general notatiam s above. We note that
the order ofG itself need not be prime, although to provide collision stgice the
size ofG’s largest DLP-hard subgroup of prime order will be relevantdetermining
the maximal allowable message length. Our reduction islairo that of Bellare and
Micciancio [2], but tighter because we reduce from the DLR prime order subgroup.

Definition 5 (DLP) LetG, be a finite cyclic group of known prime orderand with
generatorf. The discrete logarithm problem i@, is to find, givery drawn uniformly
at random fromG,, the unique value < z < ¢ such thaty = f*.

Definition 6 (k-modified DLP) LeH be a finite cyclic group with generataér. Let G
be a subgroup oH with generatorg = AlM/IGl, Lety : H — H be a map such that
Y(hi)HI/1C1 = (n,)IRI/IS] for all h; € H. Thek-modified discrete logarithm problem

for (H, G, v) is to find, giverh; drawn uniformly at random froral fori = 1,... k, a
nonzero solutiorfes, .. ., ex) € [0, q)* of
k
([T onyrie =1
=1



Theorem 7 Assumey divides|G|, but ¢ does not dividéH| and thatk > 1. An at-
tacker that solves thie-modified discrete logarithm problem f@H, G, ) in time¢ with
probability e can be used to solve the discrete logarithm probler@jnC G in time
t + t' with probabilitye — 1/¢, wheret’ is essentially the time to perform /afold
double exponentiation iH.

Proof:

Giveny € G,, we need to find: such thatf* = y with the help of an attacker that
solves thek-modified discrete logarithm problem. Lt = yb h% fori = 1,...,k,
where thes; andb; are drawn uniform at random froffy, [H|). As a result the:; are
distributed uniformly as expected by themodified DLP attacker, so on input of these
h; the attacker will, with probability, return(es, . . ., ex) such that

k

(H w(ybihﬂri)ei)lHl/lG‘ =1

i=1

hence
gz’;laiei — yf(IHI/IG\) Ty biei

Note thaty = f* for some (yet unkown) value df < = < ¢ and that, w.l.o.g.,
f = g!®l/4. Sinceg is a generator dfG|, this implies that

k k
Zaiei = —x(|H|/q)Zb7;ei mod |G|
i=1

i=1

and because divides|G| also
k k
Z ae; = —x(|H|/q) Zbiei mod q .
=1 =1

Now we can compute if (|H|/q) Zle bie; # 0 mod q. Sinceq? does not divide
[H|, we know thatH|/q is invertible modulog, so we need to show thgt:f:1 bie; #
0 mod ¢ with probability at most /q.

Because, given ang;, € H and0 < b; < ¢, there is exactly one; such that
h; = h%yb it follows that the adversary given tite has no Shannon information on
b; when announcing the;. Consequently, unless all are congruent t&® modulog
(which is not allowed by the restrictions on thg, Ele b;e; is uniformly randomly
distributed modulg, so the probability of it bein@ mod ¢ is 1/q.

Q.E.D.

Algorithm 8: Modified VSH-DL compression function.

Let H be a finite cyclic group of known, factored order and generatd.et G be
a subgroup oH with generatory = hIMI/ICl. Let ¢ be a prime dividing G| but not
[H|/q. Lety : H — H be a map such that(h;)HI/16l = (n,)HI/IS] for all h; € H.



Let Compress : G — R be an efficiently computable injection. Lete a fixed integer
length such that|log, ¢| — 1)k < 2*. The modified VSH-DL compression function
Hupr : {0,1}=eezal =Dk _, R is defined for ar-bit messagen consisting of bits
mi, ma,...,meWith £ < (|log, q] — 1)k as follows.

1. [Initialise] Setzo « 1, £ « [£] andj < 0.

2. [Padding] Sein; « Ofor ¢ <1 < Lk.

3. [Merkle-Damgard Strengthening] Lét= Y%, ¢,2¢~1 with ¢; € {0,1} be the
binary representation of the message lerg®etm cx; < £; for0 < i < k.

4. [Finished?] Ifj = £ + 1 terminate with outpuCompress(x‘E‘/‘G').

5. [Hash nextblock] Set;.; « 2% x [IF_, w(h;)™i++:.

6 [Increasej] Increasej by one. Go back to Step 4.

For completeness, we note that the collision resistanckeoh&sh function above
can be related tb-modified DLP by observing that the (implicit) map turningssages
into the relevant exponents far, is injective on its domain (this is the reason for the
length restrictions on the message).

As mentioned before, we will instantiate Algorithm 8 with = IF;;G andG a
subgroup of ordep® — p + 1 which has cofactop® — 1)(p + 1). Moreover for
Compress we will substituteCeilidh. For efficient field arithmetic we restrict ourselves
top = 2 mod 9. In this case will generateZ; and®q (z) = 2% +23+1isirreduciblein
F,. Hence ify is a root of®y(x) (i.e., a ninth root of unity), thefry, 72, 73,74, ~v°,7°)
is a basis for the extension fiekt}s = F,[v]. The arithmetic based on this extension
also lies at the basis of the fast implementation [10] of XTid &EILIDH.

Leta = Z?:o ajyitt e F,c. We are interested in finding a small representation
¥(a) of a such that multiplication of an arbitrary field element{fu) will be relatively
cheap. We do this implicitly. Instead of giving a straightfard definition of) we show
how to sample efficiently and (almost) uniformly frqﬁ@F;G). This is done by ensuring

thatw(F;G)(PS‘l)(P“) gives rise to the (almost) uniform distribution ov@r
We sample from)(F’) as follows. Drawa, andas uniformly and independently

at random frontf,. Let ¢ (a) = apy + 7 + a57°. That this works follows from the
following observation:

Lemma 9 The map)’ : F2 — G defined by}’ (aq, as) = (apy+72+azy8) @’ -DE+D)
has a range of at leagt’ /3 elements.

Proof:  To prove the statement we will upper bound the number ofgiotiis, that is,
sets of distinct pairgag, as) and (bo, b5) such that)’ (ag, as) = 1’ (bg, bs). Equiva-
lently, we are counting the setsandb of prescribed formu = agy + 2 + a57® and

b = byy +~2 + bsy® such thau’ ~D(e+1) — p(P*~D(#+1)_ The latter equation can be
rewritten a:a(apsb)erl - (abps)p“) = 0. This can be computed algebraically, giving
rise to initially six equations (one for each coordinatei, that can be simplified to

(a0 = bo)(1 + aogbo + asbs) =0
(CL5 —bs + 2(0,0 — bo) + agbs — a5b0)(1 + agbg + a5b5) =0



plus a third condition. Simultaneously satisfying the abbtnvo equations can only be
doneif eithef(ag, as) = (bo, bs) orif (14+agbo+asbs) = 0. Unlesg(bg, bs) = (0,0) the
latter solution allows us substitution of eithey or a5 in the third and final equation to
be satisfied (and note that or{i§, 0) is in the preimage of’(0, 0)). This third equation
will then yield a quadratic equation in eithes or a5 that is only degenerate (i.e. equal
to zero) if bothby = 0 andb; = 0. Since a quadratic equation over a finite field has
at most two solutions, we have shown that any preimag¢ ¢fas cardinality at most
three, from which the claim follows. Q.E.D.

One can improve performance considerably by picking smadindas. The caveat
is that the security is no longer directly related to a cleafassumption. Our choice
will be to set(as); equal to 1 and letag); depend on, i.e. simply range through a
number ofay values that are easy to multiply with. In particular, we &g); = i + 1
for a given.

For completeness we note that the preimage undesf 1 € G in this case is
restricted toag = 0 or ap = 1, which can be seen by using the¢’~D®+D) = 1
is equivalent toa®’*+P+D(P+1) ¢ F*. Moreover, ifa = agy +7? + 7% andb =
boy + 2 +~°, thena®*—D@+1) = p@*-DE+D) iff ¢ = b or a, b are in the preimage
of 1.

Thus we are insured that as long as we pickdhdistinct and unequal td or 1 our
system is not obviously flawed and there is no reason to asthahéhe choice of our
¥ (h;) is weak. The resulting hash function can be proven secuterasg that solving
the following, admittedly tailor-made, problem is hard:

Definition 10 (Small Element DLP) Let be a prime congruent td mod 9 such that
p?> — p + 1 has at least one big prime factqr Let~ be a ninth-root of unity and let
hi = (i+ 1)y +72+7° € F fori = 1,..., k. The small element discrete logarithm

problem is to find, givep, a nonzero solutiofes, . . ., ex) € [0, q)* of

k

([Tt b 1.

i=1

4 An Elliptic Curve Variant of VSH-DL

Since their introduction to cryptography by Koblitz and Mi| elliptic curves have
become ever more popular as a replacement for finite fieldsge bLP-based schemes
on. This is mainly due to the fact that there is no known atyamito solve the DLP on
a general elliptic curve faster than the generic Pollardethod. This allows one to use
curves with group sizes quadratic in the security one wisheéfer.

An immediate result of this is that to obta2f bit security against collision-finding,
one can actually use a hash function based on VSH-DL thautijpst over2k bits
(by using affine representation and standard point comipresghere th& -coordinate
is replaced by a single bit to resolve any square root amtyigioreover, the com-
putations are relatively fast. In this article we concetetian curves over prime fields,
though similar results are expected to hold for curves oirerly or ternary fields.



An elliptic curve over a prime fielf,, with p > 3 can be represented using the short
Weierstrass form
Y2 = X3+ auX +ag

where it is common to use, = —3, for example in the NIST standard curves, in
order to extract some performance benefits. The set of pality’) € F> satisfying
the equation above together with a point at infinity form aeliaim group under the
addition operation also known as the chord-tangent prodégspoint at infinity serves
as group identity and the negation of a pqifit, Y) is (X, —Y).

Optimising elliptic curve arithmetic has been the focus l@rge number of articles.
Excellent overviews are given by Brown et al.[5] and Han&arst al.[11]. One of the
most efficient methods is the use of mixed coordinates, wtterdixed multiplicands
are kept in affine representation but where computationsl@ane using the Jacobian
representation. Point doubling with the Jacobian reptasien costs 4 field multiplica-
tions and 4 field squarings. Adding an affinely representeat po a point in Jacobian
representation costs 8 field multiplications and 3 field sqga. The result again is in
the Jacobian representation.

One could consider the use of small poifts However, it seems that only one of
the coordinates oF; can be picked small, since the other coordinate typicallpvis
from the curve equation (indeed,df, = —3 andag has full size, it is impossible for
both theX and theY -coordinate of a point on the curve to be small). It is easye® s
from [11, Algorithm 3.22] that both coordinates are usedyamce during the point
addition, so picking smalP;’s will reduce the cost of a point addition by at most one
field multiplication.

A possible solution to this problem is the use of a Montgonreresentation.
Recently Brown [4] showed how to perform a multi-exponetigia efficiently in this
setting.

5 Experimental Results
Strategy The crucial operation in the implementation of VSH is

k
2 Mj.k+1
Tjp1 < T Hpi I (mod n).
i=1

This product can be computed in several ways by reshuffliegotider in which the
multiplications take place. One option is to start V\d&and then multiply by the rele-
vantp; terms one by one, reducing each time. The option recommdnd€dntini et
al. is to first compute the product

k
O
2
=1

and then multiply byc?. Due to the choice of parameters, the prodetill be smaller
than the modulugv when computed over the integers, so modular reductionsare n
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slow|fastb = 2[fastb = 4[fastb = 8
SHA1-160 26.29 (or 16.89 with SIMD)
VSH 632.36| 622.11| 370.37| 277.60
VSH-DL-A| 715.71| 676.04| 382.68] 274.75
VSH-DL-B| 5507.54| 6244.37| 3126.34| 1338.18
VSH-DL-C |16080.26|11777.89| 7542.05| 4105.31

Table 1.A comparison between the original VSH design and three ntgiaf VSH-DL.
Results are given in clock cycles per byte of input.

necessary. VSH relies on this feature of gheor small element values to enable the
construction of high performance implementations. It @sts as the bottleneck for
our compressed VSH-DL variants. Specifically, it is muchdeato reason about how
one would delay reductions in either the cyclotomic subgrouelliptic curve cases:
although one can attempt to construct some notion of smathenhts, it is difficult to
imagine how performing computation with such elements héllas efficient as in the
original VSH case.

Results In order to evaluate the relative performance characiesisf our VSH-DL
designs versus the original proposal by Contini et al. [63, produced some experi-
mental results using an implementation in C. Our platformtifiese experiments was
a 2.8Ghz Intel Pentiumt; we used GCCL.0.1 to compile our implementation which
relied on NTL [18] for the underlying arithmetic. We prodalcan implementation of
the original VSH scheme and three variants of the VSH-DL sthas detailed below:

VSH The original VSH scheme operates modulo an RSA number pq for primes
p andq. The parametersandq were selected such thiajg, (V) = 1024.

VSH-DL-.A The first variant represents the original VSH-DL scheme diit®det al.
by working in the group of integers modulo a primesuch thatp = 2¢ + 1 for
some primey. The parameters andq were selected such thiafg, (p) = 1152.

VSH-DL- B The second variant represents the cyclotomic subgroupbéSél-DL
design as described in Section 3. It works in a grGuphich is a subgroup dﬂ‘;ﬁ.
The parametep was selected such thiate, (p) = 192. In this implementation we
were careful to use delayed reduction techniques to impaatiemetic inG, and to
construct a dedicated multiplication function for mulig@ition by small elements
which have a special, sparse form.

VSH-DL-C The final variant represents the elliptic curve based VSHdBsign as de-
scribed in Section 4. It works in a prime subgroup of a CUINE,,). The parameter
p was selected such thiig, (p) = 192. We considered only random curves of the
form

E:Y?=X?-3X +as

such that special reduction technigues such as those fadvee primes were not
available; one might expect an incremental improvemeneifigpmance by using
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such a parameterisation. We used Jacobian projective ioabed and a mixed-
addition strategy as is common in many point multiplicatiethods. The form of
arithmetic on the curve meant that a dedicated point additiaction for addition

of small elements did not give any significant benefit.

For each variant, our parameter selection is such that theigeof the resulting hash
functions is roughly equal. However, we make no attempt teelect values of that
are sensible for the different variants; we ése 131 in all cases. The results in Table 5
detail the performance of our variants; the figures quotecchock cycles per byte of
input measured using tmalt sc instruction. They do notinclude the cost of initialising
the hash function, for example pre-computation of any wblesmall elements. We
include results, following the nomenclature of Contini &t for both slow and fast
versions: the fast version blocks the input and uses somegngutation to improve
performance.

Analysis Even considering incremental performance improvementsdiyg, for ex-
ample, Mersenne primes in the elliptic curve case, our V3HvBriants perform at
least an order or magnitude worse than either the originé ¥6VSH-DL proposals
by Contini et al. In this respect, their worth in terms of ppeformance is untenable.
This is exacerbated when one considers that hardware sattetefor modular multi-
plication as used in VSH is commonplace as a result of use i; RBe might expect
significant performance improvements in a practical sgttis a result.

However, one area of advantage which our cyclotomic sulgvatiant of VSH-DL
gives is memory footprint. That is, the computation of srfialt elements is essentially
free in comparison with the computation of the small primesduin VSH. For the
figures in [6][Section 5] one can see that VSH pays a heftyegrnderms of memory
real-estate to achieve the levels of performance indicatedr results. Although the
performance is lower, our cyclotomic subgroup variant ofvBL requires far less
memory.

A more subtle issue is the selection of theparameter. By increasing, which
roughly speaking is the block size of the hash function, aredecrease the number
of squaring operations in the compression function; thelmemof multiplications stays
the same. The choice 6ffor VSH is motivated by the need to avoid modular reductions
in computing the producP from above. In our schemes we have already highlighted
the fact that it is not easy to avoid such reductions; as sueham be more flexible in
our choice ofk.

6 Conclusion

In this article we have examined in depth the possibility &sdoVSH-DL on either
cyclotomic subgroups of finite fields of extension degreeasixon elliptic curves of
large prime characteristic. We concluded that for cycldatsubgroups using CEILIDH
we can get a hash function that is about an order of magnilodesthan the original
VSH-DL proposal, secure under a slightly different assuompfdue to an inevitable
redefining of what constitutes a small element), but has apcession factor that is

12



three times as high. Using elliptic curves, we derive a hasbtfon that is significantly
slower than the original VSH-DL proposal, but whose comgi@sfactor is six times as
high and its security can be directly linked to that of thendrd ECDLP. In both cases
the poor performance is balanced by a potential saving ing&f memory footprint.

We reiterate that our main concern was provable collisisistance under a discrete

logarithm-like assumption. Like VSH and VSH-DL on which ocwnstructions are
based, our scheme provides only collision resistance aiychizbe suitable to replace
a random oracle in all situations.

References

1.

~

10.

11.

12.

13.

14.

15.

16.

M. Bellare, O. Goldreich and S. Goldwasser. Incrementgptography: The Case of Hash-
ing and Signing. INPAdvances in Cryptology (CRYPTOSpringer-Verlag LNCS 839, 216—
233, 1994.

. M. Bellare and, D. Micciancio. A New Paradigm for Collisi&-ree Hashing: Incrementality

at Reduced Cost. IAdvances in Cryptology (EUROCRYRBpringer-Verlag LNCS 1233,
163-192, 1997.

. E.Biham and A. Shamir. Differential Cryptanalysis of DE& Cryptosystems. IAdvances

in Cryptology (CRYPTQ)Springer-Verlag LNCS 537, 2—-21, 1990.

. D. R. L. Brown. Multi-Dimensional Montgomery Ladders fBHiptic Curves. IACR eprint,

2006/220, 2006.

. M. Brown, D. Hankerson, J. Lépez, and A. Menezes. Sofvimplementation of the NIST

elliptic curves over prime fields. In D. Naccache, edi@f;RSA’01volume 2020 of_ecture
Notes in Computer Sciengeages 250-265. Springer-Verlag, 2001.

. S. Contini, A. K. Lenstra, and R. Steinfeld. VSH, an effitiand provable collision resistant

hash function. In S. Vaudenay, editéiglvances in Cryptography—Euro’0golume 4004 of
Lecture Notes in Computer Scienpages 165-182. Springer-Verlag, 2006.

. J. Daemen and V. RijmefThe Design of RijndaelSpringer-Verlag, 2002.
. 1.B. Damgard. Collision Free Hash Functions and Pubby Kignature Schemes. Ad-

vances in Cryptology (EUROCRYRBpringer-Verlag LNCS 304, 203-216, 1987.

. R. Granger.On Small Degree Extension Fields in CryptologyhD thesis, University of

Bristol, 2005.

R. Granger, D. Page, and M. Stam. A comparison of ceilidh»r. In D. Buell, editor,
ANTS-V] volume 3076 ofLecture Notes in Computer Sciengages 235-249. Springer-
Verlag, 2004.

D. Hankerson, A. Menezes, and S. Vanston@uide to Elliptic Curve Cryptography
Springer-Verlag, 2004.

A. K. Lenstra. Using cyclotomic polynomials to constrafficient discrete logarithm cryp-
tosystems over finite fields. In V. Varadharajan, J. Piepraykl Y. Mu, editorsACISP’97
volume 1270 oL ecture Notes in Computer Scienpages 127-138. Springer-Verlag, 1997.
A.K. Lenstraand E. R. Verheul. The XTR public key systémM. Bellare, editorAdvances
in Cryptography—Crypto’00volume 1880 of_ecture Notes in Computer Scienpages 1—
19. Springer-Verlag, 2000.

M. Matsui Linear Cryptanalysis Method for DES Cipher.Aldvances in Cryptology (EU-
ROCRYPT,) Springer-Verlag LNCS 765, 386—-397, 1993.

R.C. Merkle. A Fast Software One-way Hash Functidaurnal of Cryptology3, 43-58,
1990.

K. Rubin and A. Silverberg. Torus-based cryptograptechhical Report 39, IACR’s ePrint
Archive, 2003.

13



17. M.-J. O. Saarinen. Security of VSH in the real world. Téchl Report 103, IACR’s ePrint
Archive, 2006.

18. V. Shoup. NTL: A Library for doing Number Theory. Availab from:
http://www.shoup.net/ntl/

19. M. Stam and A. K. Lenstra. Efficient subgroup exponeiatigin quadratic and sixth degree
extensions. In J. Burton S. Kaliski, C. Kog, and C. Paaitoesi CHES'02 volume 2523 of
Lecture Notes in Computer Scienpages 318-332. Springer-Verlag, 2003.

20. X. Wang, H. Yu, and Y. L. Yin. Efficient Collision SearchtAtks on SHA-0. IrAdvances
in Cryptology (CRYPTQ)Springer-Verlag LNCS 3621, 1-16, 2005.

21. X. Wang, Y. Yin, H. Yu. Finding Collisions in the Full SHA- In Advances in Cryptology
(CRYPTO) Springer-Verlag LNCS 3621, 7-36, 2005.

A FastVSH

Recall that fori € Z~(, we letp; be thei-th prime number. LefV be an RSA mod-
ulus, letk be the block length and Iétbe the chunking factor. To avoid intermediate
reductions, one should ensure tﬁ{ﬁ:l P2v—1); < IN. Note that the Merkle-Damgard
strengthening listed below might allow collisions on messaof length greater than
2% but for reasonable parameter choices ahdk this will not be an issue.

Algorithm 11: VSH compression function [6].

The VSH compression functioRy s : {0,1}* — Z} is defined as follows for an
£-bit messagen consisting of bitsn,, ma, ..., my.

1.  [Padding] Sef « [£] andm; « 0 for ¢ < i < Lbk.

2. [Radix Conversion] Sed; = le’.;é mb(i_1)+j+12j for0 <i <k.

3. [Merkle-Damgard Strengthening] Lét= Y% | 7,20-Db with ¢; € {0,2" — 1}
be the2’-ary representation of the message lengtBetM ., ; «— ¢; for 0 <
i <k.

[Initialise Loop] Setry <+ 1 andj < 0.

[Padding] Setn; « 0for ¢ < i < Lbk.

[Finished] Ifj = £ + 1 terminate with output ;.

[Prepare product] SeP HlepMiJr(i,l)(zb,l) skipping those for which
M —i=0.

[Hash nextblock] Set;.; « z7 x P (mod N).

9. [Increasegj] Increasej by one. Go back to Step 6.

No gk

o
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