195 research outputs found

    Mechanisms of Surviving Burial: Dune Grass Interspecific Differences Drive Resource Allocation After Sand Deposition

    Get PDF
    Sand dunes are important geomorphic formations of coastal ecosystems that are critical in protecting human populations that live in coastal areas. Dune formation is driven by ecomorphodynamic interactions between vegetation and sediment deposition. While there has been extensive research on responses of dune grasses to sand burial, there is a knowledge gap in understanding mechanisms of acclimation between similar, coexistent, dune-building grasses such as Ammophila breviligulata (C3), Spartina patens (C4), and Uniola paniculata (C4). Our goal was to determine how physiological mechanisms of acclimation to sand burial vary between species. We hypothesize that (1) in the presence of burial, resource allocation will be predicated on photosynthetic pathway and that we will be able to characterize the C3 species as a root allocator and the C4 species as leaf allocators. We also hypothesize that (2) despite similarities between these species in habitat, growth form, and life history, leaf, root, and whole plant traits will vary between species when burial is not present. Furthermore, when burial is present, the existing variability in physiological strategy will drive species-specific mechanisms of survival. In a greenhouse experiment, we exposed three dune grass species to different burial treatments: 0 cm (control) and a one-time 25-cm burial to mimic sediment deposition during a storm. At the conclusion of our study, we collected a suite of physiological and morphological functional traits. Results showed that Ammophila decreased allocation to aboveground biomass to maintain root biomass, preserving photosynthesis by allocating nitrogen (N) into light-exposed leaves. Conversely, Uniola and Spartina decreased allocation to belowground production to increase elongation and maintain aboveground biomass. Interestingly, we found that species were functionally distinct when burial was absent; however, all species became more similar when treated with burial. In the presence of burial, species utilized functional traits of rapid growth strategy, although mechanisms of change were interspecifically variable

    The Biological Flora of Coastal Dunes and Wetlands: Avicennia germinans (L.) L.

    Get PDF
    Avicennia germinans (L.) L. is a pantropical, subtropical, and occasionally warm-temperate mangrove species that occurs on shorelines that have a broad horizontal tidal range. Also known as black mangrove, stands typically develop under anoxic, water-logged conditions in substrates of silt or clay. Black mangrove can tolerate salinity values ranging from 0 to 90 parts per thousand. Salt is excreted from salt glands on both leaf epidermal surfaces, and aerosol salt spray and salt crystals are frequently observed on the upper leaf epidermis. Avicennia germinans is viviparous. The embryos have no dormancy requirements, and there is no seed bank. This mangrove species has the northernmost distributional range of any mangrove species in North America. It occurs in Louisiana and northern Florida. Color-infrared photography and airborne video imagery techniques have been used successfully to map stands of black mangrove on subtropical coastal shorelines. Reforestation efforts using seedlings and saplings have been successful in several areas of the tropics and subtropics. Avicennia germinans stands play an important role in ecosystem functions as a natural barrier to coastal erosion caused by tropical storms, as habitat for a wide range of organisms in intertidal food chains, and as a carbon repository

    Biological Flora of the Tropical and Subtropical Intertidal Zone: Literature Review for Rhizophora mangle L.

    Get PDF
    Rhizophora mangle L. is a tropical and subtropical mangrove species that occurs as a dominant tree species in the intertidal zone of low-energy shorelines. Rhizophora mangle plays an important role in coastal zones as habitat for a wide range of organisms of intertidal food webs, as a natural barrier to coastal erosion, and as carbon sequestration. A review of mangrove literature has been performed, but a review specifically on red mangroves has not. The approach was to cover a broad range of topics with a focus on topics that have seen significant work since the 1970s. This review includes a brief introduction to red mangroves and then focuses on the following topics: biogeography, habitats and zonation, geomorphological interactions, taxonomy, histology, anatomy, physiological ecology, productivity, biomass, litter, reproduction, population biology, plant communities, interactions with other species, impacts of storms, reforestation, remote sensing, modelling, and economic importance

    Do contaminants originating from state-of-the-art treated wastewater impact the ecological quality of surface waters?

    Get PDF
    Since the 1980s, advances in wastewater treatment technology have led to considerably improved surface water quality in the urban areas of many high income countries. However, trace concentrations of organic wastewater-associated contaminants may still pose a key environmental hazard impairing the ecological quality of surface waters. To identify key impact factors, we analyzed the effects of a wide range of anthropogenic and environmental variables on the aquatic macroinvertebrate community. We assessed ecological water quality at 26 sampling sites in four urban German lowland river systems with a 0–100% load of state-of-the-art biological activated sludge treated wastewater. The chemical analysis suite comprised 12 organic contaminants (five phosphor organic flame retardants, two musk fragrances, bisphenol A, nonylphenol, octylphenol, diethyltoluamide, terbutryn), 16 polycyclic aromatic hydrocarbons, and 12 heavy metals. Non-metric multidimensional scaling identified organic contaminants that are mainly wastewater-associated (i.e., phosphor organic flame retardants, musk fragrances, and diethyltoluamide) as a major impact variable on macroinvertebrate species composition. The structural degradation of streams was also identified as a significant factor. Multiple linear regression models revealed a significant impact of organic contaminants on invertebrate populations, in particular on Ephemeroptera, Plecoptera, and Trichoptera species. Spearman rank correlation analyses confirmed wastewater-associated organic contaminants as the most significant variable negatively impacting the biodiversity of sensitive macroinvertebrate species. In addition to increased aquatic pollution with organic contaminants, a greater wastewater fraction was accompanied by a slight decrease in oxygen concentration and an increase in salinity. This study highlights the importance of reducing the wastewater-associated impact on surface waters. For aquatic ecosystems in urban areas this would lead to: (i) improvement of the ecological integrity, (ii) reduction of biodiversity loss, and (iii) faster achievement of objectives of legislative requirements, e.g., the European Water Framework Directive

    High transonic speed transport aircraft study

    Get PDF
    An initial design study of high-transonic-speed transport aircraft has been completed. Five different design concepts were developed. These included fixed swept wing, variable-sweep wing, delta wing, double-fuselage yawed-wing, and single-fuselage yawed-wing aircraft. The boomless supersonic design objectives of range=5560 Km (3000 nmi), payload-18 143 kg (40 000lb), Mach=1.2, and FAR Part 36 aircraft noise levels were achieved by the single-fuselage yawed-wing configuration with a gross weight of 211 828 Kg (467 000 lb). A noise level of 15 EPNdB below FAR Part 36 requirements was obtained with a gross weight increase to 226 796 Kg (500 000 lb). Although wing aeroelastic divergence was a primary design consideration for the yawed-wing concepts, the graphite-epoxy wings of this study were designed by critical gust and maneuver loads rather than by divergence requirements. The transonic nacelle drag is shown to be very sensitive to the nacelle installation. A six-degree-of-freedom dynamic stability analysis indicated that the control coordination and stability augmentation system would require more development than for a symmetrical airplane but is entirely feasible. A three-phase development plan is recommended to establish the full potential of the yawed-wing concept

    Cyperus tetragonus Ell.

    No full text
    https://thekeep.eiu.edu/herbarium_specimens_byname/5899/thumbnail.jp

    Eleocharis elliptica Kunth

    No full text
    https://thekeep.eiu.edu/herbarium_specimens_byname/4013/thumbnail.jp

    Cyperus engelmannii Steud.

    No full text

    Cyperus esculentus var. leptostachyus Boeckl.

    No full text
    https://thekeep.eiu.edu/herbarium_specimens_byname/7962/thumbnail.jp
    • …
    corecore