290 research outputs found

    Modélisation aquaponique: une revue des modèles et outils de simulation disponibles

    Full text link
    peer reviewedIntroduction. Aquaponics is quickly expanding. Specific models and modeling tools have been developed within different studies. However, no study has yet attempted nor succeeded in bringing the aquaponic community around a common modeling project to centralize knowledge and develop an effective tool for users and professional growers. Literature. This paper reviews the relevant literature to provide an overview of the available simulation models and associated modeling tools. Furthermore, it identifies the current needs to lead further modeling developments. Conclusions. Several powerful models and modeling tools have been developed but are highly specific to their research scope and are often inaccessible. The modeling knowledge specific to aquaponics is at an advanced stage but is scattered among many different works. Therefore, it is evident that a shared and accessible modeling tool, which is currently missing, would greatly accelerate the development of aquaponics.Smart Aquaponics: Development of intelligent management tools for aquaponic systems adapted to professionals, urban communities and training6. Clean water and sanitation2. Zero hunger12. Responsible consumption and productio

    Unbiasing the density of TTV-characterised sub-Neptunes: Update of the mass-radius relationship of 34 Kepler planets

    Full text link
    Transit Timing Variations (TTVs) can provide useful information on compact multi-planetary systems observed by transits, by putting constraints on the masses and eccentricities of the observed planets. This is especially helpful when the host star is not bright enough for radial velocity follow-up. However, in the past decades, numerous works have shown that TTV-characterised planets tend to have a lower densities than RV-characterised planets. Re-analysing 34 Kepler planets in the super-Earth to sub-Neptunes range using the RIVERS approach, we show that at least part of these discrepancies was due to the way transit timings were extracted from the light curve, which had a tendency to under-estimate the TTV amplitudes. We recover robust mass estimates (i.e. low prior dependency) for 23 of the planets. We compare these planets the RV-characterised population. A large fraction of these previously had a surprisingly low density now occupy a place of the mass-radius diagram much closer to the bulk of the known planets, although a slight shift toward lower densities remains, which could indicate that the compact multi-planetary systems characterised by TTVs are indeed composed of planets which are different from the bulk of the RV-characterised population. These results are especially important for obtaining an unbiased view of the compact multi-planetary systems detected by Kepler, TESS, and the upcoming PLATO mission

    Analysis of Organic Molecules Extracted from Mars Analogues and Influence of Their Mineralogy Using N-Methyl-N-(tert-butyldimethylsilyl)Trifluoroacetamide Derivatization Coupled with Gas Chromatography Mass Spectrometry in Preparation for the Sample Analysis at Mars Derivatization Experiment on the Mars Science Laboratory Mission

    Get PDF
    The search for complex organic molecules on Mars, including important biomolecules such as amino acids and carboxylic acids will require a chemical extraction and derivatization step to transform these organic compounds into species that are sufficiently volatile to be detected by gas chromatography mass spectrometry (GCMS). We have developed, a one-pot extraction and chemical derivatization protocol using N-methyl-N-(tert-butyldimethylsilyl)trifluoroacetamide (MTBSTFA) and dimethylformamide (DMF) for the Sample Analysis at Mars (SAM) experiment on the Mars Science Laboratory (MSL). The temperature and duration the derivatization reaction, pre-concentration of chemical derivatives, and gas chromatographic separation parameters have been optimized under SAM instrument design constraints. MTBSTFA/DMF extraction and derivatization at 300 C for several minutes of a variety of terrestrial Mars analogue materials facilitated the detection of amino acids and carboxylic acids in a surface soil sample collected from the Atacama Desert and a carbonate-rich stromatolite sample from Svalbard. However, the rapid reaction of MTBSTFA with water in several analogue materials that contained high abundances of hydrated minerals and the possible deactivation of derivatized compounds by iron oxides, as detected by XRD/XRF using the CheMin field unit Terra, proved to be highly problematic for the direct extraction of organics using MTBSTFA, The combination of pyrolysis and two different chemical derivatization methods employed by SAM should enable a wide range of organic compounds to be detected by GCMS if present on Mars

    The CORALIE survey for southern extrasolar planets XIX. Brown dwarfs and stellar companions unveiled by radial velocity and astrometry

    Full text link
    A historical planet-search on a sample of 1647 nearby southern main sequence stars has been ongoing since 1998 with the CORALIE spectrograph at La Silla Observatory, with a backup subprogram dedicated to the monitoring of binary stars. We review 25 years of CORALIE measurements and search for Doppler signals consistent with stellar or brown dwarf companions to produce an updated catalog of both known and previously unpublished binary stars in the planet-search sample, assessing the binarity fraction of the stellar population and providing perspective for more precise planet-search in the binary sample. We perform new analysis on the CORALIE planet-search sample radial velocity measurements, searching for stellar companions and obtaining orbital solutions for both known and new binary systems. We perform simultaneous radial velocity and proper motion anomaly fits on the subset of these systems for which Hipparcos and Gaia astrometry measurements are available, obtaining accurate estimates of true mass for the companions. We find 218 stars in the CORALIE sample to have at least one stellar companion, 130 of which are not yet published in the literature and for which we present orbital solutions. The use of proper motion anomaly allow us to derive true masses for the stellar companions in 132 systems, which we additionally use to estimate stability regions for possible planetary companions on circumprimary or circumbinary orbits. Finally, we produce detection limit maps for each star in the sample and obtain occurrence rates of 0.430.11+0.23%0.43^{+0.23}_{-0.11}\% and 12.690.77+0.87%12.69^{+0.87}_{-0.77}\% for brown dwarf and stellar companions respectively in the CORALIE sample.Comment: 34 pages, 15 figures, accepted for publication in A&

    Mass Determinations of the Three Mini-Neptunes Transiting TOI-125

    Get PDF
    The Transiting Exoplanet Survey Satellite, TESS, is currently carrying out an all-sky search for small planets transiting bright stars. In the first year of the TESS survey, a steady progress was made in achieving the mission’s primary science goal of establishing bulk densities for 50 planets smaller than Neptune. During that year, the TESS’s observations were focused on the southern ecliptic hemisphere, resulting in the discovery of three mini-Neptunes orbiting the star TOI-125, a V = 11.0 K0 dwarf. We present intensive HARPS radial velocity observations, yielding precise mass measurements for TOI-125b, TOI-125c, and TOI-125d. TOI-125b has an orbital period of 4.65 d, a radius of 2.726 ± 0.075 RE, a mass of 9.50 ± 0.88 ME, and is near the 2:1 mean motion resonance with TOI-125c at 9.15 d. TOI-125c has a similar radius of 2.759 ± 0.10 RE and a mass of 6.63 ± 0.99 ME, being the puffiest of the three planets. TOI-125d has an orbital period of 19.98 d and a radius of 2.93 ± 0.17 RE and mass 13.6 ± 1.2 ME. For TOI-125b and d, we find unusual high eccentricities of 0.19 ± 0.04 and 0.17+0.08−0.06⁠, respectively. Our analysis also provides upper mass limits for the two low-SNR planet candidates in the system; for TOI-125.04 (RP = 1.36 RE, P = 0.53 d), we find a 2σ upper mass limit of 1.6 ME, whereas TOI-125.05 (⁠RP=4.2+2.4−1.4 RE, P = 13.28 d) is unlikely a viable planet candidate with an upper mass limit of 2.7 ME. We discuss the internal structure of the three confirmed planets, as well as dynamical stability and system architecture for this intriguing exoplanet system

    Experimental determination of photostability and fluorescence-based detection of PAHs on the Martian surface

    Get PDF
    Even in the absence of any biosphere on Mars, organic molecules, including polycyclic aromatic hydrocarbons (PAHs), are expected on its surface due to delivery by comets and meteorites of extraterrestrial organics synthesized by astrochemistry, or perhaps in situ synthesis in ancient prebiotic chemistry. Any organic compounds exposed to the unfiltered solar ultraviolet spectrum or oxidizing surface conditions would have been readily destroyed, but discoverable caches of Martian organics may remain shielded in the subsurface or within surface rocks. We have studied the stability of three representative polycyclic aromatic hydrocarbons (PAHs) in a Mars chamber, emulating the ultraviolet spectrum of unfiltered sunlight under temperature and pressure conditions of the Martian surface. Fluorescence spectroscopy is used as a sensitive indicator of remaining PAH concentration for laboratory quantification of molecular degradation rates once exposed on the Martian surface. Fluorescence-based instrumentation has also been proposed as an effective surveying method for prebiotic organics on the Martian surface. We find the representative PAHs, anthracene, pyrene, and perylene, to have persistence half-lives once exposed on the Martian surface of between 25 and 60 h of noontime summer UV irradiation, as measured by fluorescence at their peak excitation wavelength. This equates to between 4 and 9.6 sols when the diurnal cycle of UV light intensity on the Martian surface is taken into account, giving a substantial window of opportunity for detection of organic fluorescence before photodegradation. This study thus supports the use of fluorescence-based instrumentation for surveying recently exposed material (such as from cores or drill tailings) for native Martian organic molecules in rover missions

    Confronting compositional confusion through the characterisation of the sub-Neptune orbiting HD 77946

    Get PDF
    We report on the detailed characterization of the HD 77946 planetary system. HD 77946 is an F5 (MM_* = 1.17 M_{\odot}, RR_* = 1.31 R_{\odot}) star, which hosts a transiting planet recently discovered by NASA's Transiting Exoplanet Survey Satellite (TESS), classified as TOI-1778 b. Using TESS photometry, high-resolution spectroscopic data from HARPS-N, and photometry from CHEOPS, we measure the radius and mass from the transit and RV observations, and find that the planet, HD 77946 b, orbits with period PbP_{\rm b} = 6.5272820.000020+0.0000156.527282_{-0.000020}^{+0.000015} d, has a mass of Mb=8.38±1.32M_{\rm b} = 8.38\pm{1.32}M_\oplus, and a radius of Rb=2.7050.081+0.086R_{\rm b} = 2.705_{-0.081}^{+0.086}R_\oplus. From the combination of mass and radius measurements, and the stellar chemical composition, the planet properties suggest that HD 77946 b is a sub-Neptune with a \sim1\% H/He atmosphere. However, a degeneracy still exists between water-world and silicate/iron-hydrogen models, and even though interior structure modelling of this planet favours a sub-Neptune with a H/He layer that makes up a significant fraction of its radius, a water-world composition cannot be ruled out, as with Teq=124838+40 T_{\rm eq} = 1248^{+40}_{-38}~K, water may be in a supercritical state. The characterisation of HD 77946 b, adding to the small sample of well-characterised sub-Neptunes, is an important step forwards on our journey to understanding planetary formation and evolution pathways. Furthermore, HD 77946 b has one of the highest transmission spectroscopic metrics for small planets orbiting hot stars, thus transmission spectroscopy of this key planet could prove vital for constraining the compositional confusion that currently surrounds small exoplanets

    Independent validation of the temperate super-Earth HD 79211 b using HARPS-N

    Get PDF
    This material is based upon work supported by the National Science Foundation Graduate Research Fellowship under grant No. DGE1745303. The HARPS-N project was funded by the Prodex Program of the Swiss Space Office (SSO), the Harvard- University Origin of Life Initiative (HUOLI), the Scottish Universities Physics Alliance (SUPA), the University of Geneva, the Smithsonian Astrophysical Observatory (SAO), the Italian National Astrophysical Institute (INAF), University of St. Andrews, Queen's University Belfast, and University of Edinburgh. Parts of this work have been supported by the National Aeronautics and Space Administration under grant No. NNX17AB59G, issued through the Exoplanets Research Program. Parts of this work have been supported by the Brinson Foundation. R.D.H. is funded by the UK Science and Technology Facilities Council (STFC)'s Ernest Rutherford Fellowship (grant No. ST/V004735/1). T.G.W and A.C.C acknowledge support from STFC consolidated grant Nos. ST/R000824/1 and ST/V000861/1, and UKSA grant ST/R003203/1.We present high-precision radial velocities (RVs) from the HARPS-N spectrograph for HD 79210 and HD 79211, two M0V members of a gravitationally bound binary system. We detect a planet candidate with a period of 24.421−0.017+0.016 days around HD 79211 in these HARPS-N RVs, validating the planet candidate originally identified in CARMENES RV data alone. Using HARPS-N, CARMENES, and RVs spanning a total of 25 yr, we further refine the planet candidate parameters to P = 24.422 ± 0.014 days, K = 3.19 ± 0.27 m s−1, M sin i = 10.6 ± 1.2M⊕, and a = 0.142 ± 0.005 au. We do not find any additional planet candidate signals in the data of HD 79211, nor do we find any planet candidate signals in HD 79210. This system adds to the number of exoplanets detected in binaries with M-dwarf members and serves as a case study for planet formation in stellar binaries.Publisher PDFPeer reviewe
    corecore