6 research outputs found

    Vasor: Accurate prediction of variant effects for amino acid substitutions in multidrug resistance protein 3

    Get PDF
    The phosphatidylcholine floppase multidrug resistance protein 3 (MDR3) is an essential hepatobiliary transport protein. MDR3 dysfunction is associated with various liver diseases, ranging from severe progressive familial intrahepatic cholestasis to transient forms of intrahepatic cholestasis of pregnancy and familial gallstone disease. Single amino acid substitutions are often found as causative of dysfunction, but identifying the substitution effect in in vitro studies is time and cost intensive. We developed variant assessor of MDR3 (Vasor), a machine learning‐based model to classify novel MDR3 missense variants into the categories benign or pathogenic. Vasor was trained on the largest data set to date that is specific for benign and pathogenic variants of MDR3 and uses general predictors, namely Evolutionary Models of Variant Effects (EVE), EVmutation, PolyPhen‐2, I‐Mutant2.0, MUpro, MAESTRO, and PON‐P2 along with other variant properties, such as half‐sphere exposure and posttranslational modification site, as input. Vasor consistently outperformed the integrated general predictors and the external prediction tool MutPred2, leading to the current best prediction performance for MDR3 single‐site missense variants (on an external test set: F1‐score, 0.90; Matthew's correlation coefficient, 0.80). Furthermore, Vasor predictions cover the entire sequence space of MDR3. Vasor is accessible as a webserver at https://cpclab.uni‐duesseldorf.de/mdr3_predictor/ for users to rapidly obtain prediction results and a visualization of the substitution site within the MDR3 structure. The MDR3‐specific prediction tool Vasor can provide reliable predictions of single‐site amino acid substitutions, giving users a fast way to initially assess whether a variant is benign or pathogenic

    Vasor: Accurate prediction of variant effects for amino acid substitutions in multidrug resistance protein 3

    Get PDF
    The phosphatidylcholine floppase multidrug resistance protein 3 (MDR3) is an essential hepatobiliary transport protein. MDR3 dysfunction is associated with various liver diseases, ranging from severe progressive familial intrahepatic cholestasis to transient forms of intrahepatic cholestasis of pregnancy and familial gallstone disease. Single amino acid substitutions are often found as causative of dysfunction, but identifying the substitution effect in in vitro studies is time and cost intensive. We developed variant assessor of MDR3 (Vasor), a machine learning‐based model to classify novel MDR3 missense variants into the categories benign or pathogenic. Vasor was trained on the largest data set to date that is specific for benign and pathogenic variants of MDR3 and uses general predictors, namely Evolutionary Models of Variant Effects (EVE), EVmutation, PolyPhen‐2, I‐Mutant2.0, MUpro, MAESTRO, and PON‐P2 along with other variant properties, such as half‐sphere exposure and posttranslational modification site, as input. Vasor consistently outperformed the integrated general predictors and the external prediction tool MutPred2, leading to the current best prediction performance for MDR3 single‐site missense variants (on an external test set: F1‐score, 0.90; Matthew's correlation coefficient, 0.80). Furthermore, Vasor predictions cover the entire sequence space of MDR3. Vasor is accessible as a webserver at https://cpclab.uni‐duesseldorf.de/mdr3_predictor/ for users to rapidly obtain prediction results and a visualization of the substitution site within the MDR3 structure. The MDR3‐specific prediction tool Vasor can provide reliable predictions of single‐site amino acid substitutions, giving users a fast way to initially assess whether a variant is benign or pathogenic

    Functional characterization of novel or yet uncharacterized ATP7B missense variants detected in patients with clinical Wilson's disease

    No full text
    Wilson's disease (WD, MIM#277900) is an autosomal recessive disorder resulting in copper excess caused by biallelic variants in the ATP7B gene (MIM#606882) encoding a copper transporting P-type ATPase. ATP7B variants of unknown significance (VUS) are detected frequently, sometimes impeding a clear diagnosis. Functional analyses can help to classify these variants as benign or pathogenic. Additionally, variants already classified as (likely) pathogenic benefit from functional analyses to understand their pathomechanism, thus contribute to the development of personalized treatment approaches in the future. We described clinical features of six WD patients and functionally characterized five ATP7B missense variants (two VUS, three yet uncharacterized likely pathogenic variants), detected in these patients. We determined the protein level, copper export capacity, and cellular localization in an in vitro model and potential structural consequences using an ATP7B protein model based on AlphaFold. Our analyses give insight into the pathomechanism and allowed reclassification for the two VUS to likely pathogenic and for two of the three likely pathogenic variants to pathogeni

    Mild Crigler–Najjar Syndrome with Progressive Liver Disease—A Multicenter Retrospective Cohort Study

    No full text
    Crigler–Najjar Syndrome (CNS) with residual activity of UDP-glucuronosyltransferase 1A1 (UGT1A1) and no need for daily phototherapy is called mild Crigler–Najjar Syndrome. Most of these patients need medical treatment for enzyme induction (phenobarbital) to lower blood levels of unconjugated bilirubin (UCB). Apart from this, no long-term problems have been described so far. The phenotype of patients with the homozygous pathogenic variant c.115C>G p.(His39Asp) in UGT1A1 is described as variable. Clinical observations of our patients led to the assumption that patients with variant c.115C>G have a mild CNS phenotype while having a high risk of developing progressive liver disease. For mild CNS disease, progressive liver disease has not been described so far. Therefore, we conducted a retrospective multicenter analysis of 14 patients with this particular variant, aiming for better characterization of this variant. We could confirm that patients with variant c.115C>G have a high risk of progressive liver disease (seven of fourteen), which increases with age despite having a very mild CNS phenotype. Earlier predictors and causes for an unfavorable disease course are not detectable, but close follow-up could identify patients with progressive liver disease at the beginning. In conclusion, these patients need close and specialized follow-up. Our study questions whether fibrosis in the CNS is really driven by high amounts of UCB or phototherapy

    MicroRNA-449a Inhibits Triple Negative Breast Cancer by Disturbing DNA Repair and Chromatid Separation

    No full text
    Chromosomal instability (CIN) can be a driver of tumorigenesis but is also a promising therapeutic target for cancer associated with poor prognosis such as triple negative breast cancer (TNBC). The treatment of TNBC cells with defects in DNA repair genes with poly(ADP-ribose) polymerase inhibitor (PARPi) massively increases CIN, resulting in apoptosis. Here, we identified a previously unknown role of microRNA-449a in CIN. The transfection of TNBC cell lines HCC38, HCC1937 and HCC1395 with microRNA-449a mimics led to induced apoptosis, reduced cell proliferation, and reduced expression of genes in homology directed repair (HDR) in microarray analyses. EME1 was identified as a new target gene by immunoprecipitation and luciferase assays. The reduced expression of EME1 led to an increased frequency of ultrafine bridges, 53BP1 foci, and micronuclei. The induced expression of microRNA-449a elevated CIN beyond tolerable levels and induced apoptosis in TNBC cell lines by two different mechanisms: (I) promoting chromatid mis-segregation by targeting endonuclease EME1 and (II) inhibiting HDR by downregulating key players of the HDR network such as E2F3, BIRC5, BRCA2 and RAD51. The ectopic expression of microRNA-449a enhanced the toxic effect of PARPi in cells with pathogenic germline BRCA1 variants. The newly identified role makes microRNA-449a an interesting therapeutic target for TNBC
    corecore