18 research outputs found
Agronomic and physiological responses of potato subjected to soil compaction and/or drying
Compact and dry soils impede root growth and restrict plant water availability, respectively, potentially causing leaf water deficit. Although both stresses likely co-occur in the field and limit yield, little is known about their combined impact on plant growth and physiology over a whole season, especially in a tuberous crop like potato. Field-grown potato (Solanum tuberosum L. var. 'Maris Piper') was exposed to factorial combination of deficit irrigation (watering when soil moisture deficit reached 60 vs. 25 mm) and soil compaction (compacted with heavy machinery vs. uncompacted), with plant growth and leaf physiology measured weekly. Shoot growth was restricted by adverse soil conditions, while leaf water status, photosynthesis rates and leaf abscisic acid (ABA) levels did not vary significantly between treatments. Across all treatments, final yield was linearly correlated (R2 = 0.71) to mid-season shoot biomass. Compared to well-watered plants growing in loose soil, soil compaction, deficit irrigation and their combination decreased final tuber yield similarly, by 23%â34%. Surprisingly, tuber size distribution was more dependent on irrigation management than on soil strength. Plants exposed to deficit irrigation produced more, smaller potatoes than their respective control. Thus, low soil water availability and/or compact soil caused these field-grown potatoes to restrict shoot growth rather than limit leaf gas exchange. Further research is needed to understand the role of hormonal signalling in regulating tuber growth when plants are exposed to compact and dry soils. © 2021 The Authors. Annals of Applied Biology published by John Wiley & Sons Ltd on behalf of Association of Applied Biologists
Time-lapse geophysical assessment of agricultural practices on soil moisture dynamics
Geophysical surveys are now commonly used in agriculture for mapping applications. High-throughput collection of geophysical properties such as electrical conductivity (inverse of resistivity), can be used as a proxy for soil properties of interest (e.g. moisture, texture, salinity). Most applications only rely on a single geophysical survey at a given time. However, time-lapse geophysical surveys have greater capabilities to characterize the dynamics of the system, which is the focus of this work. Assessing the impact of agricultural practices through the growth season can reveal important information for the crop production. In this work, we demonstrate the use of time-lapse electrical resistivity tomography (ERT) and electromagnetic induction (EMI) surveys through a series of three case studies illustrating common agricultural practices (cover crops, compaction with irrigation, tillage with nitrogen fertilization). In the first case study, time-lapse EMI reveals the initial effect of cover crops on soil drying and the absence of effect on the subsequent main crop. In the second case study, compaction, leading to a shallower drying depth for potatoes was imaged by time-lapse ERT. In the third case study, larger change in electrical conductivity over time were observed in conventional tillage compared to direct drill using time-lapse EMI. In addition, different nitrogen application rates had significant effect on the yield and leaf area index but only ephemeral effects on the dynamics of electrical conductivity mainly after the first application. Overall, time-lapse geophysical surveys show great potential for monitoring the impact of different agricultural practices that can influence crop yield
Climate change and land suitability for potato production in England and Wales: impacts and adaptation
The viability of commercial potato production is influenced by spatial and temporal variability in soils and agroclimate, and the availability of water resources where supplemental irrigation is required. Soil characteristics and agroclimatic conditions greatly influence the cultivar choice, agronomic husbandry practices and the economics of production. Using the latest (UKCP09) scenarios of climate change for the UK, this paper describes a methodology using pedo-climatic functions and a GIS to model and map current and future land suitability for potato production in England and Wales. The outputs identify regions where rainfed production is likely to become limiting and where future irrigated production would be constrained due to shortages in water availability. The results suggest that by the 2050s, the area of land that is currently well or moderately suited for rainfed production would decline by 74 and 95% under the "most likely" climate projections for the low and high emissions scenario respectively, owing to increased droughtiness. In many areas, rainfed production would become increasingly risky. However, with supplemental irrigation, around 85% of the total arable land in central and eastern England would remain suitable for production, although most of this is in catchments where water resources are already over-licensed and/or over-abstracted; the expansion of irrigated cropping is thus likely to be constrained by water availability. The increase in volumetric water demand due to the switch from rainfed to irrigated potato cropping is likely to be much greater than the incremental increase in water demand solely on irrigated potatoes. The implications of climate change on the potato industry, the adaptation options and responses available, and the uncertainty associated with the land suitability projections, are discussed
Effect of planting depth and hilling practices on total, U.S. No. 1, and field greening tuber yields
Climate change impacts on UK top and soft fruit production
The impacts of climate change for UK fruit growing regions requiring winter chill dormancy are discussed and insights are drawn from subtropical regions where chilling requirements for these perennial crops have been overcome. A further challenge facing UK soft fruit growers is water availability for irrigation. To maintain future productivity, more sustainable production systems are needed. The authors discuss recent advances in irrigation scheduling and deficit irrigation techniques, along with their potential to reduce water inputs while maintaining yields of high-quality, healthy berries