10 research outputs found

    High alpha feedback control for agile half-loop maneuvers of the F-18 airplane

    Get PDF
    A nonlinear feedback control law for the F/A-18 airplane that provides time-optimal or agile maneuvering of the half-loop maneuver at high angles of attack is given. The feedback control law was developed using the mathematical approach of singular perturbations, in which the control devices considered were conventional aerodynamic control surfaces and thrusting. The derived nonlinear control law was used to simulate F/A-18 half-loop maneuvers. The simulated results at Mach 0.6 and 0.9 compared well with pilot simulations conducted at NASA

    Nonlinear feedback control for high alpha flight

    Get PDF
    Analytical aerodynamic models are derived from a high alpha 6 DOF wind tunnel model. One detail model requires some interpolation between nonlinear functions of alpha. One analytical model requires no interpolation and as such is a completely continuous model. Flight path optimization is conducted on the basic maneuvers: half-loop, 90 degree pitch-up, and level turn. The optimal control analysis uses the derived analytical model in the equations of motion and is based on both moment and force equations. The maximum principle solution for the half-loop is poststall trajectory performing the half-loop in 13.6 seconds. The agility induced by thrust vectoring capability provided a minimum effect on reducing the maneuver time. By means of thrust vectoring control the 90 degrees pitch-up maneuver can be executed in a small place over a short time interval. The agility capability of thrust vectoring is quite beneficial for pitch-up maneuvers. The level turn results are based currently on only outer layer solutions of singular perturbation. Poststall solutions provide high turn rates but generate higher losses of energy than that of classical sustained solutions

    Analytical aerodynamic model of a high alpha research vehicle wind-tunnel model

    Get PDF
    A 6 DOF analytical aerodynamic model of a high alpha research vehicle is derived. The derivation is based on wind-tunnel model data valid in the altitude-Mach flight envelope centered at 15,000 ft altitude and 0.6 Mach number with Mach range between 0.3 and 0.9. The analytical models of the aerodynamics coefficients are nonlinear functions of alpha with all control variable and other states fixed. Interpolation is required between the parameterized nonlinear functions. The lift and pitching moment coefficients have unsteady flow parts due to the time range of change of angle-of-attack (alpha dot). The analytical models are plotted and compared with their corresponding wind-tunnel data. Piloted simulated maneuvers of the wind-tunnel model are used to evaluate the analytical model. The maneuvers considered are pitch-ups, 360 degree loaded and unloaded rolls, turn reversals, split S's, and level turns. The evaluation finds that (1) the analytical model is a good representation at Mach 0.6, (2) the longitudinal part is good for the Mach range 0.3 to 0.9, and (3) the lateral part is good for Mach numbers between 0.6 and 0.9. The computer simulations show that the storage requirement of the analytical model is about one tenth that of the wind-tunnel model and it runs twice as fast

    Implications of Electronics Constraints for Solid-State Quantum Error Correction and Quantum Circuit Failure Probability

    Full text link
    In this paper we present the impact of classical electronics constraints on a solid-state quantum dot logical qubit architecture. Constraints due to routing density, bandwidth allocation, signal timing, and thermally aware placement of classical supporting electronics significantly affect the quantum error correction circuit's error rate. We analyze one level of a quantum error correction circuit using nine data qubits in a Bacon-Shor code configured as a quantum memory. A hypothetical silicon double quantum dot quantum bit (qubit) is used as the fundamental element. A pessimistic estimate of the error probability of the quantum circuit is calculated using the total number of gates and idle time using a provably optimal schedule for the circuit operations obtained with an integer program methodology. The micro-architecture analysis provides insight about the different ways the electronics impact the circuit performance (e.g., extra idle time in the schedule), which can significantly limit the ultimate performance of any quantum circuit and therefore is a critical foundation for any future larger scale architecture analysis.Comment: 10 pages, 7 figures, 3 table

    Missile autopilot design using Mu-Synthesis

    Get PDF
    Issued as Interim report, Progress reports [nos. 1-2], and Final report, Project no. E-16-68

    Analytical aerodynamic model of a high alpha research vehicle wind-tunnel model

    No full text
    Issued as Semiannual status report, Semiannual progress report, and Final reportFinal report has author: Jichang Ca
    corecore