19 research outputs found

    Size Distribution of Agglomerates of Milk Powder in Wet Granulation Process in a Vibro-Fluidized Bed

    Get PDF
    Results of experiments on the influence of technological parameters (intensity of vibration, granulation of the liquid feed, temperature of fluidization agent) on the change of size distribution, as well as mass mean diameter of the milk powder particles subjected to the wet granulation process (agglomeration) in a vibro-fluidized bed granulator are shown in this paper. Using water as a granulation liquid and air as a fluidization agent, it was found that mass mean diameter increases with increase of water feed, intensity of vibration, and decrease of air temperature. Increasing the intensity of vibration and decreasing the air temperature, primarily induces the increase of the dimensions of the initial nuclei. This can be explained on the basis of different influences that these changes (velocity of particle motion, intensity of particle collision, drying rate) have on the coalescence of particles with smaller and/or bigger dimensions

    The Source of Spontaneous Activity in the Main Olfactory Bulb of the Rat

    Get PDF
    In vivo, most neurons in the main olfactory bulb exhibit robust spontaneous activity. This paper tests the hypothesis that spontaneous activity in olfactory receptor neurons drives much of the spontaneous activity in mitral and tufted cells via excitatory synapses.Single units were recorded in vivo from the main olfactory bulb of a rat before, during, and after application of lidocaine to the olfactory nerve. The effect of lidocaine on the conduction of action potentials from the olfactory epithelium to the olfactory bulb was assessed by electrically stimulating the olfactory nerve rostral to the application site and monitoring the field potential evoked in the bulb.Lidocaine caused a significant decrease in the amplitude of the olfactory nerve evoked field potential that was recorded in the olfactory bulb. By contrast, the lidocaine block did not significantly alter the spontaneous activity of single units in the bulb, nor did it alter the field potential evoked by electrical stimulation of the lateral olfactory tract. Lidocaine block also did not change the temporal patters of action potential or their synchronization with respiration.Spontaneous activity in neurons of the main olfactory bulb is not driven mainly by activity in olfactory receptor neurons despite the extensive convergence onto mitral and tufted cells. These results suggest that spontaneous activity of mitral and tufted is either an inherent property of these cells or is driven by centrifugal inputs to the bulb

    The effects of olfactory nerve block on field potentials.

    No full text
    <p>Field potentials recorded in the main olfactory bulb were evoked by stimulating the olfactory nerve (ON field potential, A and B) and the lateral olfactory tract (LOT field potential, C and D) before (control, A and C) and after (ON block, B and D) applying lidocaine to the olfactory nerve.</p

    Imaging Fibrosis and Separating Collagens using Second Harmonic Generation and Phasor Approach to Fluorescence Lifetime Imaging.

    No full text
    In this paper we have used second harmonic generation (SHG) and phasor approach to auto fluorescence lifetime imaging (FLIM) to obtain fingerprints of different collagens and then used these fingerprints to observe bone marrow fibrosis in the mouse femur. This is a label free approach towards fast automatable detection of fibrosis in tissue samples. FLIM has previously been used as a method of contrast in different tissues and in this paper phasor approach to FLIM is used to separate collagen I from collagen III, the markers of fibrosis, the largest groups of disorders that are often without any effective therapy. Often characterized by an increase in collagen content of the corresponding tissue, the samples are usually visualized by histochemical staining, which is pathologist dependent and cannot be automated

    Histological evaluation of the extent of the olfactory nerve block.

    No full text
    <p>DiI was applied to the cut ends of the exposed olfactory nerve. (A) shows a whole mount, bright field view of the main olfactory bulb. (B) shows the same view as A under fluorescence. (C) shows a section through the olfactory bulb showing the cell bodies with DAPI staining; the olfactory nerve layer (ONL), the glomerular (GL), external plexiform (EPL) and mitral cell (MCL) and granule cell (Gr) layers of the bulb are indicated. (D) shows the DiI staining in the same section.</p
    corecore