24 research outputs found

    Carbon Monoxide Promotes Respiratory Hemoproteins Iron Reduction Using Peroxides as Electron Donors

    Get PDF
    The physiological role of the respiratory hemoproteins (RH), hemoglobin and myoglobin, is to deliver O2 via its binding to their ferrous (FeII) heme-iron. Under variety of pathological conditions RH proteins leak to blood plasma and oxidized to ferric (FeIII, met) forms becoming the source of oxidative vascular damage. However, recent studies have indicated that both metRH and peroxides induce Heme Oxygenase (HO) enzyme producing carbon monoxide (CO). The gas has an extremely high affinity for the ferrous heme-iron and is known to reduce ferric hemoproteins in the presence of suitable electron donors. We hypothesized that under in vivo plasma conditions, peroxides at low concentration can assist the reduction of metRH in presence of CO. The effect of CO on interaction of metRH with hydrophilic or hydrophobic peroxides was analyzed by following Soret and visible light absorption changes in reaction mixtures. It was found that under anaerobic conditions and low concentrations of RH and peroxides mimicking plasma conditions, peroxides served as electron donors and RH were reduced to their ferrous carboxy forms. The reaction rates were dependent on CO as well as peroxide concentrations. These results demonstrate that oxidative activity of acellular ferric RH and peroxides may be amended by CO turning on the reducing potential of peroxides and facilitating the formation of redox-inactive carboxyRH. Our data suggest the possible role of HO/CO in protection of vascular system from oxidative damage

    Are differential consumption patterns in health-related behaviours an explanation for persistent and widening social inequalities in health in England?

    Get PDF
    During the last two decades, differential consumption patterns in health-related behaviours have increasingly been highlighted as playing an important role in explaining persistent and widening health inequalities. This period has also seen government public health policies in England place a greater emphasis on changing ‘lifestyle’ behaviours, in an attempt to tackle social inequalities in health. The aim of this study was to empirically examine the variation in health-related behaviour in relation to socio-economic position, in the English adult population, to determine the nature of this relationship and whether it has changed over time

    Spatial and temporal control of drug release through pH and alternating magnetic field induced breakage of Schiff base bonds

    No full text
    P(DEGMA-co-OEGMA-b-[TMSPMA-co-VBA])@silica@magnetite polymer–nanoparticle composites have been developed as a platform for controllable drug release. The nanocomposite facilitates controllable release of therapeutic molecules through breakage of pH and heat labile Schiff base bonds that bind the molecules to the polymer. This enables dual-stimuli responsive drug release in response to the acidic microenvironment of cancerous cells and heat generated by the magnetite nanoparticles when subjected to an alternating magnetic field, thereby permitting spatial and temporal control over ‘burst’ release of the drugs. The nanocomposite has also been shown to be effective at improving magnetic resonance imaging contrast through enhancement of spin–spin relaxivity

    Integration of parallel opposing memories underlies memory extinction

    No full text
    Accurately predicting an outcome requires that animals learn supporting and conflicting evidence from sequential experience. In mammals and invertebrates, learned fear responses can be suppressed by experiencing predictive cues without punishment, a process called memory extinction. Here, we show that extinction of aversive memories in Drosophila requires specific dopaminergic neurons, which indicate that omission of punishment is remembered as a positive experience. Functional imaging revealed co-existence of intracellular calcium traces in different places in the mushroom body output neuron network for both the original aversive memory and a new appetitive extinction memory. Light and ultrastructural anatomy are consistent with parallel competing memories being combined within mushroom body output neurons that direct avoidance. Indeed, extinction-evoked plasticity in a pair of these neurons neutralizes the potentiated odor response imposed in the network by aversive learning. Therefore, flies track the accuracy of learned expectations by accumulating and integrating memories of conflicting events

    Integration of parallel opposing memories underlies memory extinction

    No full text
    Accurately predicting an outcome requires that animals learn supporting and conflicting evidence from sequential experience. In mammals and invertebrates, learned fear responses can be suppressed by experiencing predictive cues without punishment, a process called memory extinction. Here, we show that extinction of aversive memories in Drosophila requires specific dopaminergic neurons, which indicate that omission of punishment is remembered as a positive experience. Functional imaging revealed co-existence of intracellular calcium traces in different places in the mushroom body output neuron network for both the original aversive memory and a new appetitive extinction memory. Light and ultrastructural anatomy are consistent with parallel competing memories being combined within mushroom body output neurons that direct avoidance. Indeed, extinction-evoked plasticity in a pair of these neurons neutralizes the potentiated odor response imposed in the network by aversive learning. Therefore, flies track the accuracy of learned expectations by accumulating and integrating memories of conflicting events

    Input Connectivity Reveals Additional Heterogeneity of Dopaminergic Reinforcement in Drosophila

    No full text
    Different types of Drosophila dopaminergic neurons (DANs) reinforce memories of unique valence and provide state-dependent motivational control [1]. Prior studies suggest that the compartment architecture of the mushroom body (MB) is the relevant resolution for distinct DAN functions [2, 3]. Here we used a recent electron microscope volume of the fly brain [4] to reconstruct the fine anatomy of individual DANs within three MB compartments. We find the 20 DANs of the gamma 5 compartment, at least some of which provide reward teaching signals, can be clustered into 5 anatomical subtypes that innervate different regions within gamma 5. Reconstructing 821 upstream neurons reveals input selectivity, supporting the functional relevance of DAN sub-classification. Only one PAM-gamma 5 DAN subtype gamma 5(fb) receives direct recurrent feedback from gamma 5 beta'2a mushroom body output neurons (MBONs) and behavioral experiments distinguish a role for these DANs in memory revaluation from those reinforcing sugar memory. Other DAN subtypes receive major, and potentially reinforcing, inputs from putative gustatory intemeurons or lateral horn neurons, which can also relay indirect feedback from MBONs. We similarly reconstructed the single aversively reinforcing PPL1-gamma 1 pedc DAN. The gamma 1pedc DAN inputs mostly differ from those of gamma 5 DANs and they cluster onto distinct dendritic branches, presumably separating its established roles in aversive reinforcement and appetitive motivation [5, 6]. Tracing also identified neurons that provide broad input to gamma 5, beta'2a, and gamma 1pedc DANs, suggesting that distributed DAN populations can be coordinately regulated. These connectomic and behavioral analyses therefore reveal further complexity of dopaminergic reinforcement circuits between and within MB compartments
    corecore