9 research outputs found

    Single-cell-resolved dynamics of chromatin architecture delineate cell and regulatory states in wildtype and cloche/npas4l mutant zebrafish embryos

    Get PDF
    DNA accessibility of cis regulatory elements (CREs) dictates transcriptional activity and drives cell differentiation during development. While many of the genes that regulate embryonic development have been described, the underlying CRE dynamics controlling their expression remain largely unknown. To address this, we applied single-cell combinatorial indexing ATAC-seq (sci-ATAC-seq) to whole 24 hours post fertilization (hpf) stage zebrafish embryos and developed a new computational tool, ScregSeg, that selects informative genome segments and classifies complex accessibility dynamics. We integrated the ScregSeg output with bulk measurements for histone post-translational modifications and 3D genome organization, expanding knowledge of regulatory principles between chromatin modalities. Sci-ATAC-seq profiling of npas4l/cloche mutant embryos revealed novel cellular roles for this hemato-vascular transcriptional master regulator and suggests an intricate mechanism regulating its expression. Our work constitutes a valuable resource for future studies in developmental, molecular, and computational biology

    Svep1 stabilises developmental vascular anastomosis in reduced flow conditions

    Get PDF
    Molecular mechanisms controlling the formation, stabilization and maintenance of blood vessel connections remain poorly defined. Here we identify blood flow and the large extracellular protein Svep1 as co-modulators of vessel anastomosis during developmental angiogenesis in zebrafish embryos. Both loss of Svep1 and blood flow reduction contribute to defective anastomosis of intersegmental vessels. The reduced formation and lumenisation of the dorsal longitudinal anastomotic vessel (DLAV) is associated with a compensatory increase in Vegfa/Vegfr pERK signalling, concomittant expansion of apelin-positive tip cells, but reduced expression of klf2. Experimentally, further increasing Vegfa/Vegfr signalling can rescue the DLAV formation and lumenisation defects, while its inhibition dramatically exacerbates the loss of connectivity. Mechanistically, our results suggest that flow and Svep1 co-regulate the stabilization of vascular connections, in part by modulating the Vegfa/Vegfr signalling pathway

    Single-cell-resolved dynamics of chromatin architecture delineate cell and regulatory states in zebrafish embryos

    Get PDF
    DNA accessibility of cis-regulatory elements (CREs) dictates transcriptional activity and drives cell differentiation during development. While many genes regulating embryonic development have been identified, the underlying CRE dynamics controlling their expression remain largely uncharacterized. To address this, we produced a multimodal resource and genomic regulatory map for the zebrafish community, which integrates single-cell combinatorial indexing assay for transposase-accessible chromatin with high-throughput sequencing (sci-ATAC-seq) with bulk histone PTMs and Hi-C data to achieve a genome-wide classification of the regulatory architecture determining transcriptional activity in the 24-h post-fertilization (hpf) embryo. We characterized the genome-wide chromatin architecture at bulk and single-cell resolution, applying sci-ATAC-seq on whole 24-hpf stage zebrafish embryos, generating accessibility profiles for ∼23,000 single nuclei. We developed a genome segmentation method, ScregSeg (single-cell regulatory landscape segmentation), for defining regulatory programs, and candidate CREs, specific to one or more cell types. We integrated the ScregSeg output with bulk measurements for histone post-translational modifications and 3D genome organization and identified new regulatory principles between chromatin modalities prevalent during zebrafish development. Sci-ATAC-seq profiling of npas4l/cloche mutant embryos identified novel cellular roles for this hematovascular transcriptional master regulator and suggests an intricate mechanism regulating its expression. Our work defines regulatory architecture and principles in the zebrafish embryo and establishes a resource of cell-type-specific genome-wide regulatory annotations and candidate CREs, providing a valuable open resource for genomics, developmental, molecular, and computational biology

    Developmental biology: it takes muscle to make blood cells

    No full text
    Blood stem cells derive at least in part from an embryonic vessel called the dorsal aorta. It emerges that a flanking tissue called the somite contributes cells and signals to this process

    Interferon gamma signaling positively regulates hematopoietic stem cell emergence

    No full text
    Vertebrate hematopoietic stem cells (HSCs) emerge in the aorta-gonad-mesonephros (AGM) region from "hemogenic" endothelium. Here we show that the proinflammatory cytokine interferon-{gamma} (IFN-{gamma}) and its receptor Crfb17 positively regulate HSC development in zebrafish. This regulation does not appear to modulate the proliferation or survival of HSCs or endothelial cells, but rather the endothelial-to-HSC transition. Notch signaling and blood flow positively regulate the expression of ifng and crfb17 in the AGM. Notably, IFN-{gamma} overexpression partially rescues the HSC loss observed in the absence of blood flow or Notch signaling. Importantly, IFN-{gamma} signaling acts cell autonomously to control the endothelial-to-HSC transition. IFN-{gamma}activates Stat3, an atypical transducer of IFN-{gamma}signaling, in the AGM, and Stat3 inhibition decreases HSC formation. Together, our findings uncover a developmental role for an inflammatory cytokine and place its action downstream of Notch signaling and blood flow to control Stat3 activation and HSC emergence

    Origin and function of activated fibroblast states during zebrafish heart regeneration.

    Get PDF
    The adult zebrafish heart has a high capacity for regeneration following injury. However, the composition of the regenerative niche has remained largely elusive. Here, we dissected the diversity of activated cell states in the regenerating zebrafish heart based on single-cell transcriptomics and spatiotemporal analysis. We observed the emergence of several transient cell states with fibroblast characteristics following injury, and we outlined the proregenerative function of collagen-12-expressing fibroblasts. To understand the cascade of events leading to heart regeneration, we determined the origin of these cell states by high-throughput lineage tracing. We found that activated fibroblasts were derived from two separate sources: the epicardium and the endocardium. Mechanistically, we determined Wnt signalling as a regulator of the endocardial fibroblast response. In summary, our work identifies specialized activated fibroblast cell states that contribute to heart regeneration, thereby opening up possible approaches to modulating the regenerative capacity of the vertebrate heart

    A missense mutation in the proprotein convertase gene<em> furinb</em> causes hepatic cystogenesis during liver development in zebrafish.

    No full text
    Hepatic cysts are fluid-filled lesions in the liver that are estimated to occur in 5% of the population. They may cause hepatomegaly and abdominal pain. Progression to secondary fibrosis, cirrhosis, or cholangiocarcinoma can lead to morbidity and mortality. Previous studies of patients and rodent models have associated hepatic cyst formation with increased proliferation and fluid secretion in cholangiocytes, which are partially due to impaired primary cilia. Congenital hepatic cysts are thought to originate from faulty bile duct development, but the underlying mechanisms are not fully understood. In a forward genetic screen, we identified a zebrafish mutant that developed hepatic cysts during larval stages. The cyst formation was not due to changes in biliary cell proliferation, bile secretion, or impairment of primary cilia. Instead, time-lapse live imaging data showed that the mutant biliary cells failed to form interconnecting bile ducts because of defects in motility and protrusive activity. Accordingly, immunostaining revealed a disorganized actin and microtubule cytoskeleton in the mutant biliary cells. By whole-genome sequencing, we determined that the cystic phenotype in the mutant was caused by a missense mutation in the furinb gene, which encodes a proprotein convertase. The mutation altered Furinb localization and caused endoplasmic reticulum (ER) stress. The cystic phenotype could be suppressed by treatment with the ER stress inhibitor 4-phenylbutyric acid and exacerbated by treatment with the ER stress inducer tunicamycin. The mutant liver also exhibited increased mammalian target of rapamycin (mTOR) signaling. Treatment with mTOR inhibitors halted cyst formation at least partially through reducing ER stress. Conclusion: Our study has established a vertebrate model for studying hepatic cystogenesis and illustrated the contribution of ER stress in the disease pathogenesis

    Collected Papers

    No full text
    corecore