82 research outputs found

    Insulin Promotes Glycogen Storage and Cell Proliferation in Primary Human Astrocytes

    Get PDF
    In the human brain, there are at least as many astrocytes as neurons. Astrocytes are known to modulate neuronal function in several ways. Thus, they may also contribute to cerebral insulin actions. Therefore, we examined whether primary human astrocytes are insulin-responsive and whether their metabolic functions are affected by the hormone.Commercially available Normal Human Astrocytes were grown in the recommended medium. Major players in the insulin signaling pathway were detected by real-time RT-PCR and Western blotting. Phosphorylation events were detected by phospho-specific antibodies. Glucose uptake and glycogen synthesis were assessed using radio-labeled glucose. Glycogen content was assessed by histochemistry. Lactate levels were measured enzymatically. Cell proliferation was assessed by WST-1 assay.We detected expression of key proteins for insulin signaling, such as insulin receptor β-subunit, insulin receptor substrat-1, Akt/protein kinase B and glycogen synthase kinase 3, in human astrocytes. Akt was phosphorylated and PI-3 kinase activity increased following insulin stimulation in a dose-dependent manner. Neither increased glucose uptake nor lactate secretion after insulin stimulation could be evidenced in this cell type. However, we found increased insulin-dependent glucose incorporation into glycogen. Furthermore, cell numbers increased dose-dependently upon insulin treatment.This study demonstrated that human astrocytes are insulin-responsive at the molecular level. We identified glycogen synthesis and cell proliferation as biological responses of insulin signaling in these brain cells. Hence, this cell type may contribute to the effects of insulin in the human brain

    A structured telephone-delivered intervention to reduce problem alcohol use (Ready2Change): study protocol for a parallel group randomised controlled trial

    Get PDF
    Background: Current population surveys suggest around 20% of Australians meet diagnostic criteria for an alcohol use disorder. However, only a minority seek professional help due to individual and structural barriers, such as low health literacy, stigma, geography, service operating hours and wait lists. Telephone-delivered interventions are readily accessible and ideally placed to overcome these barriers. We will conduct a randomised controlled trial (RCT) to examine the efficacy of a standalone, structured telephone-delivered intervention to reduce alcohol consumption, problem severity and related psychological distress among individuals with problem alcohol use. Methods/design: This is a single site, parallel group, two-arm superiority RCT. We will recruit 344 participants from across Australia with problem alcohol use. After completing a baseline assessment, participants will be randomly allocated to receive either the Ready2Change (R2C) intervention (n = 172, four to six sessions of structured telephone-delivered intervention, R2C self-help resource, guidelines for alcohol consumption and stress management pamphlets) or the control condition (n = 172, four phone check-ins < 5 min, guidelines for alcohol consumption and stress management pamphlets). Telephone follow-up assessments will occur at 4-6 weeks, 3 months, 6 months and 12 months post-baseline. The primary outcome is the Alcohol Use Disorders Identification Test (AUDIT) score administered at 3 months post-baseline. Secondary outcomes include change in AUDIT score (6 and 12 months post-baseline), change in number of past-month heavy drinking days, psychological distress, health and wellbeing, quality of life, client treatment evaluation and cost effectiveness. Discussion: This study will be one of the first RCTs conducted internationally to examine the impact of a standalone, structured telephone-delivered intervention to address problem alcohol use and associated psychological morbidity. The proposed intervention is expected to contribute to the health and wellbeing of individuals who are otherwise unlikely to seek treatment through mainstream service models, to reduce the burden on specialist services and primary care providers and to provide an accessible and proportionate response, with resulting cost savings for the health system and broader community. Trial registration: Australian New Zealand Clinical Trials Registry, ACTRN12618000828224. Pre-registered on 16 May 2018

    Plastic and Heritable Components of Phenotypic Variation in Nucella lapillus: An Assessment Using Reciprocal Transplant and Common Garden Experiments

    Get PDF
    Assessment of plastic and heritable components of phenotypic variation is crucial for understanding the evolution of adaptive character traits in heterogeneous environments. We assessed the above in relation to adaptive shell morphology of the rocky intertidal snail Nucella lapillus by reciprocal transplantation of snails between two shores differing in wave action and rearing snails of the same provenance in a common garden. Results were compared with those reported for similar experiments conducted elsewhere. Microsatellite variation indicated limited gene flow between the populations. Intrinsic growth rate was greater in exposed-site than sheltered-site snails, but the reverse was true of absolute growth rate, suggesting heritable compensation for reduced foraging opportunity at the exposed site. Shell morphology of reciprocal transplants partially converged through plasticity toward that of native snails. Shell morphology of F2s in the common garden partially retained characteristics of the P-generation, suggesting genetic control. A maternal effect was revealed by greater resemblance of F1s than F2s to the P-generation. The observed synergistic effects of plastic, maternal and genetic control of shell-shape may be expected to maximise fitness when environmental characteristics become unpredictable through dispersal

    Cytoskeletal control of B cell responses to antigens.

    Get PDF
    The actin cytoskeleton is essential for cell mechanics and has increasingly been implicated in the regulation of cell signalling. In B cells, the actin cytoskeleton is extensively coupled to B cell receptor (BCR) signalling pathways, and defects of the actin cytoskeleton can either promote or suppress B cell activation. Recent insights from studies using single-cell imaging and biophysical techniques suggest that actin orchestrates BCR signalling at the plasma membrane through effects on protein diffusion and that it regulates antigen discrimination through the biomechanics of immune synapses. These mechanical functions also have a role in the adaptation of B cell subsets to specialized tasks during antibody responses

    Genome-wide association study reveals a set of genes associated with resistance to the Mediterranean corn borer (Sesamia nonagrioides L.) in a maize diversity panel

    Get PDF

    Ageing in relation to skeletal muscle dysfunction: redox homoeostasis to regulation of gene expression

    Get PDF
    • …
    corecore