3 research outputs found

    Infanticide in wolves: seasonality of mortalities and attacks at dens support evolution of territoriality

    Get PDF
    Evidence for territoriality is usually correlative or post hoc as we observe the results of past selection that are challenging to detect. Wolves (Canis lupus) are considered territorial because of competition for food (resource defense), yet they exhibit classic intrinsic behaviors of social regulation (protection against infanticide). This emphasis on prey and infrequent opportunity to observe wild wolf behavior has led to little investigation into the causes of or competitive underpinnings in the evolution of wolf territoriality. We report 6 cases of territorial wolf packs attacking neighboring packs at or near their den; 2 attacks were observed in detail. In all cases, except perhaps one, the attacking pack killed adult wolves either at the den or near it; in 4 cases, pups were probably lost. Loss of pups led to future loss of territory and in one case pack cessation. Intraspecific killing (measured in collared adults only) peaked in April, the month when pups were born and helpless in dens, even though aggressive interactions were at their seasonal low. Twelve of 13 (92%) of the wolves killed during the denning season (March, April, May) were reproductive (males and females), and 8 of 12 were dominant individuals (highest ranking wolf for that sex in the pack). Wolf–wolf killings were also high in October and December, the beginning and middle of the nomadic season, respectively. Aggressive interactions were more frequent during the nomadic season when wolves were roaming their territory as a group compared to the denning season when wolf activity was centered on the den and pack members less cohesive. We conclude that attacks on dens are a more effective form of interpack competition than interference during the breeding season, the current best-supported hypothesis, and that protected pup-rearing space is the primary cause of wolf territoriality

    Demographic history shapes North American gray wolf genomic diversity and informs species\u27 conservation

    Get PDF
    Effective population size estimates are critical information needed for evolutionary predictions and conservation decisions. This is particularly true for species with social factors that restrict access to breeding or experience repeated fluctuations in population size across generations. We investigated the genomic estimates of effective population size along with diversity, subdivision, and inbreeding from 162,109 minimally filtered and 81,595 statistically neutral and unlinked SNPs genotyped in 437 grey wolf samples from North America collected between 1986 and 2021. We found genetic structure across North America, represented by three distinct demographic histories of western, central, and eastern regions of the continent. Further, grey wolves in the northern Rocky Mountains have lower genomic diversity than wolves of the western Great Lakes and have declined over time. Effective population size estimates revealed the historical signatures of continental efforts of predator extermination, despite a quarter century of recovery efforts. We are the first to provide molecular estimates of effective population size across distinct grey wolf populations in North America, which ranged between N  ~ 275 and 3050 since early 1980s. We provide data that inform managers regarding the status and importance of effective population size estimates for grey wolf conservation, which are on average 5.2 - 9.3% of census estimates for this species. We show that while grey wolves fall above minimum effective population sizes needed to avoid extinction due to inbreeding depression in the short term, they are below sizes predicted to be necessary to avoid long-term risk of extinction
    corecore