24 research outputs found

    More than Mere Numbers: The Impact of Lethal Control on the Social Stability of a Top-Order Predator

    Get PDF
    Population control of socially complex species may have profound ecological implications that remain largely invisible if only their abundance is considered. Here we discuss the effects of control on a socially complex top-order predator, the dingo (Canis lupus dingo). Since European occupation of Australia, dingoes have been controlled over much of the continent. Our aim was to investigate the effects of control on their abundance and social stability. We hypothesized that dingo abundance and social stability are not linearly related, and proposed a theoretical model in which dingo populations may fluctuate between three main states: (A) below carrying capacity and socially fractured, (B) above carrying capacity and socially fractured, or (C) at carrying capacity and socially stable. We predicted that lethal control would drive dingoes into the unstable states A or B, and that relaxation of control would allow recovery towards C. We tested our predictions by surveying relative abundance (track density) and indicators of social stability (scent-marking and howling) at seven sites in the arid zone subject to differing degrees of control. We also monitored changes in dingo abundance and social stability following relaxation and intensification of control. Sites where dingoes had been controlled within the previous two years were characterized by low scent-marking activity, but abundance was similar at sites with and without control. Signs of social stability steadily increased the longer an area was allowed to recover from control, but change in abundance did not follow a consistent path. Comparison of abundance and stability among all sites and years demonstrated that control severely fractures social groups, but that the effect of control on abundance was neither consistent nor predictable. Management decisions involving large social predators must therefore consider social stability to ensure their conservation and ecological functioning

    Modeling effects of environmental change on wolf population dynamics, trait evolution, and life history.

    No full text
    Environmental change has been observed to generate simultaneous responses in population dynamics, life history, gene frequencies, and morphology in a number of species. But how common are such eco-evolutionary responses to environmental change likely to be? Are they inevitable, or do they require a specific type of change? Can we accurately predict eco-evolutionary responses? We address these questions using theory and data from the study of Yellowstone wolves. We show that environmental change is expected to generate eco-evolutionary change, that changes in the average environment will affect wolves to a greater extent than changes in how variable it is, and that accurate prediction of the consequences of environmental change will probably prove elusive

    Disease outbreaks select for mate choice and coat color in wolves

    No full text
    We know much about pathogen evolution and the emergence of new disease strains, but less about host resistance and how it is signaled to other individuals and subsequently maintained. The cline in frequency of black-coated wolves (<i>Canis lupus</i>) across North America is hypothesized to result from a relationship with canine distemper virus (CDV) outbreaks. We tested this hypothesis using cross-sectional data from wolf populations across North America that vary in the prevalence of CDV and the allele that makes coats black, longitudinal data from Yellowstone National Park, and modeling. We found that the frequency of CDV outbreaks generates fluctuating selection that results in heterozygote advantage that in turn affects the frequency of the black allele, optimal mating behavior, and black wolf cline across the continent

    The Short-Term Effects of a Routine Poisoning Campaign on the Movements and Detectability of a Social Top-Predator.

    Get PDF
    Top-predators can be important components of resilient ecosystems, but they are still controlled in many places to mitigate a variety of economic, environmental and/or social impacts. Lethal control is often achieved through the broadscale application of poisoned baits. Understanding the direct and indirect effects of such lethal control on subsequent movements and behaviour of survivors is an important pre-requisite for interpreting the efficacy and ecological outcomes of top predator control. In this study, we use GPS tracking collars to investigate the fine-scale and short-term movements of dingoes (Canis lupus dingo and other wild dogs) in response to a routine poison-baiting program as an example of how a common, social top-predator can respond (behaviourally) to moderate levels of population reduction. We found no consistent control-induced differences in home range size or location, daily distance travelled, speed of travel, temporal activity patterns or road/trail usage for the seven surviving dingoeswemonitored immediately before and after a typical lethal control event. These data suggest that the spatial behaviour of surviving dingoes was not altered in ways likely to affect their detectability, and if control-induced changes in dingoes\u27 ecological function did occur, these may not be related to altered spatial behaviour or movement patterns
    corecore