9 research outputs found

    Menopausal hormone therapy and other breast cancer risk factors in relation to the risk of different histological subtypes of breast cancer: a case-control study

    Get PDF
    INTRODUCTION: Breast cancers of different histology have different clinical and prognostic features. There are also indications of differences in aetiology. We therefore evaluated the risk of the three most common histological subtypes in relation to menopausal hormone therapy and other breast cancer risk factors. METHODS: We used a population-based case-control study of breast cancer to evaluate menopausal hormone therapy and other breast cancer risk factors for risk by histological subtype. Women aged 50 to 74 years, diagnosed with invasive ductal (n = 1,888), lobular (n = 308) or tubular (n = 93) breast cancer in Sweden in 1993 to 1995 were compared with 3,065 age-frequency matched controls randomly selected from the population. Unconditional logistic regression was used to calculate odds ratios (ORs) and 95% confidence intervals (CIs) for ductal, lobular, and tubular cancer. RESULTS: Women who had used medium potency estrogen alone were at increased risks of both ductal and lobular cancer. Medium potency estrogen-progestin was associated with increased risks for all subtypes, but the estimates for lobular and tubular cancer were higher compared with ductal cancer. We found OR 5.6 (95% CI 3.2–9.7) for lobular cancer, OR 6.5 (95% CI 2.8–14.9) for tubular cancer and OR 2.3 (95% CI 1.6–3.3) for ductal cancer with ≥5 years use of medium potency estrogen-progestin therapy. Low potency oral estrogen (mainly estriol) appeared to be associated with an increased risk for lobular cancer, but the association was strongest for short-term use. Reproductive and anthropometric factors, smoking, and past use of oral contraceptives were mostly similarly related to the risks of the three breast cancer subtypes. Recent alcohol consumption of > 10 g alcohol/day was associated with increased risk only for tubular cancer (OR 3.1, 95% CI 1.4–6.8). CONCLUSION: Menopausal hormone therapy was associated with increased risks for breast cancer of both ductal and lobular subtype, and medium potency estrogen-progestin therapy was more strongly associated with lobular compared with ductal cancer. We also found medium potency estrogen-progestin therapy and alcohol to be strongly associated with tubular cancer. With some exceptions, most other risk factors seemed to be similarly associated with the three subtypes of breast cancer

    Structure and Stability of the Spinach Aquaporin SoPIP2;1 in Detergent Micelles and Lipid Membranes

    Get PDF
    Background: SoPIP2;1 constitutes one of the major integral proteins in spinach leaf plasma membranes and belongs to the aquaporin family. SoPIP2;1 is a highly permeable and selective water channel that has been successfully overexpressed and purified with high yields. In order to optimize reconstitution of the purified protein into biomimetic systems, we have here for the first time characterized the structural stability of SoPIP2;1. Methodology/Principal Finding: We have characterized the protein structural stability after purification and after reconstitution into detergent micelles and proteoliposomes using circular dichroism and fluorescence spectroscopy techniques. The structure of SoPIP2;1 was analyzed either with the protein solubilized with octyl-beta-D-glucopyranoside (OG) or reconstituted into lipid membranes formed by E. coli lipids, diphytanoylphosphatidylcholine (DPhPC), or reconstituted into lipid membranes formed from mixtures of 1-palmitoyl-2-oleoyl-phosphatidylcholine (POPE), 1-palmitoyl-2-oleoyl-phosphatidylethanolamine (POPE), 1-palmitoyl-2-oleoyl-phosphatidylserine (POPS), and ergosterol. Generally, SoPIP2;1 secondary structure was found to be predominantly a-helical in accordance with crystallographic data. The protein has a high thermal structural stability in detergent solutions, with an irreversible thermal unfolding occurring at a melting temperature of 58 degrees C. Incorporation of the protein into lipid membranes increases the structural stability as evidenced by an increased melting temperature of up to 70 degrees C. Conclusion/Significance: The results of this study provide insights into SoPIP2;1 stability in various host membranes and suggest suitable choices of detergent and lipid composition for reconstitution of SoPIP2;1 into biomimetic membranes for biotechnological applications
    corecore