4,843 research outputs found
Antiadhesive Role of Apical Decay-accelerating Factor (CD55) in Human Neutrophil Transmigration across Mucosal Epithelia
Neutrophil migration across mucosal epithelium during inflammatory episodes involves the precise orchestration of a number a cell surface molecules and signaling pathways. After successful migration to the apical epithelial surface, apically localized epithelial proteins may serve to retain PMN at the lumenal surface. At present, identification of apical epithelial ligands and their PMN counter-receptors remain elusive. Therefore, to define the existence of apical epithelial cell surface proteins involved in PMN–epithelial interactions, we screened a panel of antibodies directed against epithelial plasma membranes. This strategy identified one antibody (OE-1) that both localized to the apical cell membrane and significantly inhibited PMN transmigration across epithelial monolayers. Microsequence analysis revealed that OE-1 recognized human decay-accelerating factor (DAF, CD55). DAF is a highly glycosylated, 70–80-kD, glycosyl-phosphatidyinositol–linked protein that functions predominantly as an inhibitor of autologous complement lysis. DAF suppression experiments using antisense oligonucleotides or RNA interference revealed that DAF may function as an antiadhesive molecule promoting the release of PMN from the lumenal surface after transmigration. Similarly, peptides corresponding to the antigen recognition domain of OE-1 resulted in accumulation of PMN on the apical epithelial surface. The elucidation of DAF as an apical epithelial ligand for PMN provides a target for novel anti-inflammatory therapies directed at quelling unwanted inflammatory episodes
Thermal Testing of a Stacked Core Mirror for UV Applications
The ASTRO2010 Decadal Survey stated that an advanced large-aperture ultraviolet, optical, near-infrared (UVOIR) telescope is required to enable the next generation of compelling astrophysics and exoplanet science; and, that present technology is not mature enough to affordably build and launch any potential UVOIR mission concept. Under Science and Technology funding, NASA's Marshall Space Flight Center and ITT Exelis have developed a more cost effective process to make 4m monolithic spaceflight UV quality, low areal density, thermally and dynamically stable primary mirrors. A proof of concept mirror was built and tested down to 250K which would allow imaging out to 2.5 microns. This mirror was thermally tested at the Marshall Spaceflight Center to understand the thermal changes between the processing temperature of 293K and the potential low end of the operational temperature of 250K. Isothermal testing results and front plate gradient results have been evaluated and compared to analysis predictions. Measurement of gravity effects on surface figure will be compared to analytical predictions. Future testing of a larger Pathfinder mirror will also be discussed
Bostonia: The Boston University Alumni Magazine. Volume 9
Founded in 1900, Bostonia magazine is Boston University's main alumni publication, which covers alumni and student life, as well as university activities, events, and programs
Engineering Specifications derived from Science Requirements
Advanced Mirror Technology Development (AMTD) is a multi-year effort to systematically mature to TRL-6 the critical technologies needed to produce 4-m or larger flight-qualified UVOIR mirrors by 2018 so that a viable mission can be considered by the 2020 Decadal Review. This technology must enable missions capable of both general astrophysics & ultra-high contrast observations of exoplanets. To accomplish our objective, we use a science-driven systems engineering approach. We mature technologies required to enable the highest priority science AND result in a high-performance low-cost low-risk system
Engineering Specification for Large-aperture UVO Space Telescopes Derived from Science Requirements
An advanced large aperture UV/optical UVO space telescope is required for the next generation of astrophysics and exoplanet science. The science requirements of proposed exoplanet and astrophysics missions were used to determine the encircled energy, point spread function stability and thermal environment requirements. These requirements then determine the optical wavefront specification for potential telescope assemblies which can fit inside current and planned launch vehicles. The optical wavefront specification becomes the top level of the error budget that is split into various sources that control the structural, thermal and optical design
Recommended from our members
Characterization of subsurface media from locations up- and down-gradient of a uranium-contaminated aquifer.
The processing of sediment to accurately characterize the spatially-resolved depth profiles of geophysical and geochemical properties along with signatures of microbial density and activity remains a challenge especially in complex contaminated areas. This study processed cores from two sediment boreholes from background and contaminated core sediments and surrounding groundwater. Fresh core sediments were compared by depth to capture the changes in sediment structure, sediment minerals, biomass, and pore water geochemistry in terms of major and trace elements including pollutants, cations, anions, and organic acids. Soil porewater samples were matched to groundwater level, flow rate, and preferential flows and compared to homogenized groundwater-only samples from neighboring monitoring wells. Groundwater analysis of nearby wells only revealed high sulfate and nitrate concentrations while the same analysis using sediment pore water samples with depth was able to suggest areas high in sulfate- and nitrate-reducing bacteria based on their decreased concentration and production of reduced by-products that could not be seen in the groundwater samples. Positive correlations among porewater content, total organic carbon, trace metals and clay minerals revealed a more complicated relationship among contaminant, sediment texture, groundwater table, and biomass. The fluctuating capillary interface had high concentrations of Fe and Mn-oxides combined with trace elements including U, Th, Sr, Ba, Cu, and Co. This suggests the mobility of potentially hazardous elements, sediment structure, and biogeochemical factors are all linked together to impact microbial communities, emphasizing that solid interfaces play an important role in determining the abundance of bacteria in the sediments
Development of Stacked Core Technology for the Fabrication of Deep Lightweight UV Quality Space Mirrors
Decadal Survey stated that an advanced large-aperture ultraviolet, optical, near-infrared (UVOIR) telescope is required to enable the next generation of compelling astrophysics and exoplanet science; and, that present technology is not mature enough to affordably build and launch any potential UVOIR mission concept. Under Science and Technology funding, NASA's Marshall Space Flight Center (MSFC) and ITT Exelis have developed a more cost effective process to make up to 4m monolithic spaceflight UV quality, low areal density, thermally and dynamically stable primary mirrors. A proof of concept mirror was completed at ITT Exelis and tested down to 250K at MSFC which would allow imaging out to 2.5 microns. The parameters and test results of this concept mirror will be shown. The scale-up process will be discussed and the technology development path to a 4m mirror system by 2018 will also be outlined
Advanced UVOIR Mirror Technology Development (AMTD) for Very Large Space Telescopes
ASTRO2010 Decadal Survey stated that an advanced large-aperture ultraviolet, optical, near-infrared (UVOIR) telescope is required to enable the next generation of compelling astrophysics and exoplanet science; and, that present technology is not mature enough to affordably build and launch any potential UVOIR mission concept. AMTD is the start of a multiyear effort to develop, demonstrate and mature critical technologies to TRL-6 by 2018 so that a viable flight mission can be proposed to the 2020 Decadal Review. AMTD builds on the state of art (SOA) defined by over 30 years of monolithic & segmented ground & space-telescope mirror technology to mature six key technologies: (1) Large-Aperture, Low Areal Density, High Stiffness Mirror Substrates: Both (4 to 8 m) monolithic and (8 to 16 m) segmented primary mirrors require larger, thicker, and stiffer substrates. (2) Support System: Large-aperture mirrors require large support systems to ensure that they survive launch and deploy on orbit in a stress-free and undistorted shape. (3) Mid/High Spatial Frequency Figure Error: Very smooth mirror is critical for producing high-quality point spread function (PSF) for high contrast imaging. (4) Segment Edges: The quality of segment edges impacts PSF for high-contrast imaging applications, contributes to stray light noise, and affects total collecting aperture. (5) Segment to Segment Gap Phasing: Segment phasing is critical for producing high-quality temporally-stable PSF. (6) Integrated Model Validation: On-orbit performance is driven by mechanical & thermal stability. Compliance cannot be 100% tested, but relies on modeling. AMTD is pursuing multiple design paths to provide the science community with options to enable either large aperture monolithic or segmented mirrors with clear engineering metrics traceable to science requirements
- …