280 research outputs found

    Cellular and molecular interactions of phosphoinositides and peripheral proteins

    Get PDF
    Anionic lipids act as signals for the recruitment of proteins containing cationic clusters to biological membranes. A family of anionic lipids known as the phosphoinositides (PIPs) are low in abundance, yet play a critical role in recruitment of peripheral proteins to the membrane interface. PIPs are mono-, bis-, or trisphosphorylated derivatives of phosphatidylinositol (PI) yielding seven species with different structure and anionic charge. The differential spatial distribution and temporal appearance of PIPs is key to their role in communicating information to target proteins. Selective recognition of PIPs came into play with the discovery that the substrate of protein kinase C termed pleckstrin possessed the first PIP binding region termed the pleckstrin homology (PH) domain. Since the discovery of the PH domain, more than ten PIP binding domains have been identified including PH, ENTH, FYVE, PX, and C2 domains. Representative examples of each of these domains have been thoroughly characterized to understand how they coordinate PIP headgroups in membranes, translocate to specific membrane docking sites in the cell, and function to regulate the activity of their full-length proteins. In addition, a number of novel mechanisms of PIP-mediated membrane association have emerged, such as coincidence detection – specificity for two distinct lipid headgroups. Other PIP-binding domains may also harbor selectivity for a membrane physical property such as charge or membrane curvature. This review summarizes the current understanding of the cellular distribution of PIPs and their molecular interaction with peripheral proteins

    Notes and tips for improving quality of lipid-protein overlay assays

    Get PDF
    To reduce costs of lipid-binding assays, allow for multiple lipids to be screened for protein binding simultaneously, and to make lipid binding more user friendly, lipids have been dotted onto membranes to investigate lipid-protein interactions. These assays are similar to a western blot where the membrane is blocked, incubated with a protein of interest and detected using antibodies. Although the assay is inexpensive and straightforward, problems with promiscuous or poor binding, as well as insufficient blocking occur frequently. In this technical note, we share several specific improvements to ensure lipid-protein overlay assays are of high quality and contain proper controls

    The Ebola Virus matrix protein, VP40, requires phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) for extensive oligomerization at the plasma membrane and viral egress

    Get PDF
    VP40 is one of eight proteins encoded by the Ebola Virus (EBOV) and serves as the primary matrix protein, forming virus like particles (VLPs) from mammalian cells without the need for other EBOV proteins. While VP40 is required for viral assembly and budding from host cells during infection, the mechanisms that target VP40 to the plasma membrane are not well understood. Phosphatidylserine is required for VP40 plasma membrane binding, VP40 hexamer formation, and VLP egress, However, PS also becomes exposed on the outer membrane leaflet at sites of VP40 budding, raising the question of how VP40 maintains an interaction with the plasma membrane inner leaflet when PS is flipped to the opposite side. To address this question, cellular and in vitro assays were employed to determine if phosphoinositides are important for efficient VP40 localization to the plasma membrane. Cellular studies demonstrated that PI(4,5)P2 was an important component of VP40 assembly at the plasma membrane and subsequent virus like particle formation. Additionally, PI(4,5)P2 was required for formation of extensive oligomers of VP40, suggesting PS and PI(4,5)P2 have different roles in VP40 assembly where PS regulates formation of hexamers from VP40 dimers and PI(4,5)P2 stabilizes and/or induces extensive VP40 oligomerization at the plasma membrane

    A molecular mechanism of artemisinin resistance in Plasmodium falciparum malaria

    Get PDF
    Artemisinins are the cornerstone of anti-malarial drugs. Emergence and spread of resistance to them raises risk of wiping out recent gains achieved in reducing worldwide malaria burden and threatens future malaria control and elimination on a global level. Genome-wide association studies (GWAS) have revealed parasite genetic loci associated with artemisinin resistance. However, there is no consensus on biochemical targets of artemisinin. Whether and how these targets interact with genes identified by GWAS, remains unknown. Here we provide biochemical and cellular evidence that artemisinins are potent inhibitors of Plasmodium falciparum phosphatidylinositol-3-kinase (PfPI3K), revealing an unexpected mechanism of action. In resistant clinical strains, increased PfPI3K was associated with the C580Y mutation in P. falciparum Kelch13 (PfKelch13), a primary marker of artemisinin resistance. Polyubiquitination of PfPI3K and its binding to PfKelch13 were reduced by the PfKelch13 mutation, which limited proteolysis of PfPI3K and thus increased levels of the kinase, as well as its lipid product phosphatidylinositol-3-phosphate (PI3P). We find PI3P levels to be predictive of artemisinin resistance in both clinical and engineered laboratory parasites as well as across non-isogenic strains. Elevated PI3P induced artemisinin resistance in absence of PfKelch13 mutations, but remained responsive to regulation by PfKelch13. Evidence is presented for PI3P-dependent signalling in which transgenic expression of an additional kinase confers resistance. Together these data present PI3P as the key mediator of artemisinin resistance and the sole PfPI3K as an important target for malaria elimination

    Characterization of a canola C2 domain gene that interacts with PG, an effector of the necrotrophic fungus Sclerotinia sclerotiorum

    Get PDF
    Sspg1d, one of endopolygalacturonases, is an important fungal effector secreted by the necrotrophic fungus Sclerotinia sclerotiorum during early infection. Using sspg1d as bait, a small C2 domain protein (designated as IPG-1) was identified by yeast two-hybrid screening of a canola cDNA library. Deletion analysis confirmed that the C-terminus of IPG-1 is responsible for its interaction with sspg1d in the yeast two-hybrid assay. The sspg1d/IPG-1 interaction was further confirmed in plant cells by a biomolecular fluorescence complementation (BiFC) assay. A transient expression assay showed that the IPG-1–GFP fusion protein was targeted to the plasma membrane and nucleus in onion epidermal cells. Following treatment with a Ca2+ ionophore, it was distributed throughout the cytosol. Real-time PCR assay demonstrated that IPG-1 was highly induced by Sclerotinia sclerotiorum in canola leaves and stems. Southern blot analysis indicated the presence of about five homologues of IPG-1 in the canola genome. Two additional members of the IPG-1gene family were isolated by RT-PCR. Their sequence similarity with IPG-1 is as high as 95%. However, they did not interact with sspg1d in the yeast two-hybrid assay. Possible roles of IPG-1 and its association with sspg1d in the defence signalling pathway were discussed

    Molecular Mechanism of Membrane Docking by the Vam7p PX Domain

    Get PDF
    The Vam7p t-SNARE is an essential component of the vacuole fusion machinery that mediates membrane trafficking and protein sorting in yeast. Vam7p is recruited to vacuoles by its N-terminal PX domain that specifically recognizes PtdIns(3)P in the bilayers, however the precise mechanism of membrane anchoring remains unclear. Here we describe a molecular basis for membrane targeting and penetration by the Vam7p PX domain based on structural and quantitative analysis of its interactions with lipids and micelles. Our results derived from in vitro binding measurements using NMR, monolayer surface tension experiments and mutagenesis reveal a multivalent membrane docking mechanism involving specific PtdIns(3)P recognition that is facilitated by electrostatic interactions and accompanying hydrophobic insertion. Both the hydrophobic and electrostatic components enhance the Vam7p PX domain association with PtdIns(3)P-containing membranes. The inserting Val70, Leu71, and Trp75 residues located next to the PtdIns(3)P binding pocket are surrounded by a basic patch, which is involved in nonspecific electrostatic contacts with acidic lipids, such as PtdSer. Substitution of the insertion residues significantly reduces the binding and penetrating power of the Vam7p PX domain and leads to cytoplasmic redistribution of the EGFP-tagged protein. The affinities of the PX domain for PtdIns(3)P and other lipids reveal a remarkable synergy within the multivalent complex that stably anchors Vam7p at the vacuolar membrane

    PIP5KIΞ² Selectively Modulates Apical Endocytosis in Polarized Renal Epithelial Cells

    Get PDF
    Localized synthesis of phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2] at clathrin coated pits (CCPs) is crucial for the recruitment of adaptors and other components of the internalization machinery, as well as for regulating actin dynamics during endocytosis. PtdIns(4,5)P2 is synthesized from phosphatidylinositol 4-phosphate by any of three phosphatidylinositol 5-kinase type I (PIP5KI) isoforms (Ξ±, Ξ² or Ξ³). PIP5KIΞ² localizes almost exclusively to the apical surface in polarized mouse cortical collecting duct cells, whereas the other isoforms have a less polarized membrane distribution. We therefore investigated the role of PIP5KI isoforms in endocytosis at the apical and basolateral domains. Endocytosis at the apical surface is known to occur more slowly than at the basolateral surface. Apical endocytosis was selectively stimulated by overexpression of PIP5KIΞ² whereas the other isoforms had no effect on either apical or basolateral internalization. We found no difference in the affinity for PtdIns(4,5)P2-containing liposomes of the PtdIns(4,5)P2 binding domains of epsin and Dab2, consistent with a generic effect of elevated PtdIns(4,5)P2 on apical endocytosis. Additionally, using apical total internal reflection fluorescence imaging and electron microscopy we found that cells overexpressing PIP5KIΞ² have fewer apical CCPs but more internalized coated structures than control cells, consistent with enhanced maturation of apical CCPs. Together, our results suggest that synthesis of PtdIns(4,5)P2 mediated by PIP5KIΞ² is rate limiting for apical but not basolateral endocytosis in polarized kidney cells. PtdIns(4,5)P2 may be required to overcome specific structural constraints that limit the efficiency of apical endocytosis. Β© 2013 Szalinski et al

    A Common Ca2+-Driven Interdomain Module Governs Eukaryotic NCX Regulation

    Get PDF
    Na+/Ca2+ exchanger (NCX) proteins mediate Ca2+-fluxes across the cell membrane to maintain Ca2+ homeostasis in many cell types. Eukaryotic NCX contains Ca2+-binding regulatory domains, CBD1 and CBD2. Ca2+ binding to a primary sensor (Ca3-Ca4 sites) on CBD1 activates mammalian NCXs, whereas CALX, a Drosophila NCX ortholog, displays an inhibitory response to regulatory Ca2+. To further elucidate the underlying regulatory mechanisms, we determined the 2.7 Γ… crystal structure of mammalian CBD12-E454K, a two-domain construct that retains wild-type properties. In conjunction with stopped-flow kinetics and SAXS (small-angle X-ray scattering) analyses of CBD12 mutants, we show that Ca2+ binding to Ca3-Ca4 sites tethers the domains via a network of interdomain salt-bridges. This Ca2+-driven interdomain switch controls slow dissociation of β€œoccluded” Ca2+ from the primary sensor and thus dictates Ca2+ sensing dynamics. In the Ca2+-bound conformation, the interdomain angle of CBD12 is very similar in NCX and CALX, meaning that the interdomain distances cannot account for regulatory diversity in NCX and CALX. Since the two-domain interface is nearly identical among eukaryotic NCXs, including CALX, we suggest that the Ca2+-driven interdomain switch described here represents a general mechanism for initial conduction of regulatory signals in NCX variants

    Differential Virulence Gene Expression of Group A Streptococcus Serotype M3 in Response to Co-Culture with Moraxella catarrhalis

    Get PDF
    Streptococcus pyogenes (group A Streptococcus, GAS) and Moraxella catarrhalis are important colonizers and (opportunistic) pathogens of the human respiratory tract. However, current knowledge regarding colonization and pathogenic potential of these two pathogens is based on work involving single bacterial species, even though the interplay between respiratory bacterial species is increasingly important in niche occupation and the development of disease. Therefore, to further define and understand polymicrobial species interactions, we investigated whether gene expression (and hence virulence potential) of GAS would be affected upon co-culture with M. catarrhalis. For co-culture experiments, GAS and M. catarrhalis were cultured in Todd-Hewitt broth supplemented with 0.2% yeast extract (THY) at 37Β°C with 5% CO2aeration. Each strain was grown in triplicate so that triplicate experiments could be performed. Bacterial RNA was isolated, cDNA synthesized, and microarray transcriptome expression analysis performed. We observed significantly increased (β‰₯4-fold) expression for genes playing a role in GAS virulence such as hyaluronan synthase (hasA), streptococcal mitogenic exotoxin Z (smeZ) and IgG endopeptidase (ideS). In contrast, significantly decreased (β‰₯4-fold) expression was observed in genes involved in energy metabolism and in 12 conserved GAS two-component regulatory systems. This study provides the first evidence that M. catarrhalis increases GAS virulence gene expression during co-culture, and again shows the importance of polymicrobial infections in directing bacterial virulence
    • …
    corecore