336 research outputs found

    Tonic and phasic effects of reward on the pupil:implications for locus coeruleus function

    Get PDF
    The locus coeruleus (LC), a nucleus in the pons of the brainstem, plays a significant role in attention and cognitive control. Here, we use an adapted auditory oddball paradigm and measured the pupil dilation response, to provide a marker of LC activity in humans. In Experiment 1, we show event-related pupil responses to rare auditory events which were further elevated by task relevant. In Experiment 2, by asking participants to silently count the number of oddballs, we demonstrated that the task-relevance elevation was not a result of the generation or execution of the manual response. In Experiment 3, we observed two separate effects of reward on the pupil response. First, we found an overall increase in pupil area in the high compared to the low-reward blocks: a sustained effect reminiscent of the tonic changes that occur in LC. Second, we found elevated event-related pupil responses to behaviourally relevant stimuli in the high-reward condition compared with the low-reward condition, consistent with phasic changes in LC in response to a stimulus. These results highlight the complexity of the relationship between the pupil response and reward, and the inferred role of LC in both top-down and bottom-up cognitive control

    Building Partnerships to Address Social and Technological Challenges to Enhance Farm Profitability and Improve Water Quality Through Better Grassland Management

    Get PDF
    With 2.1 million acres of pastureland and 1.25 million acres of hay land in Virginia, the rural Virginia landscape is predominately grassland. These lands form the base of the 3.96billiondollarlivestockanddairyindustryinVirginia.Managingtheselivestockinaprofitablemannerforfarmersandbeneficialtotheenvironmentisimportant.AculturaltraditionwithrootsincolonialtimeshasbeentorunanimalsinlargefieldsyearroundthroughoutVirginia.Livestockoftengrazefromspringuntilfall(about220days),andfarmersfeedhaytheremainderoftheyear.Spikesinthecostoffuel,fertilizer,andequipmentaremakingtraditionalgrazing/hayingsystemslessprofitable.TheVirginiaCooperativeExtensionFarmEnterprisebudgetsshowthatthatthecostofhayaccountsforover503.96 billion-dollar livestock and dairy industry in Virginia. Managing these livestock in a profitable manner for farmers and beneficial to the environment is important. A cultural tradition with roots in colonial times has been to run animals in large fields year-round throughout Virginia. Livestock often graze from spring until fall (about 220 days), and farmers feed hay the remainder of the year. Spikes in the cost of fuel, fertilizer, and equipment are making traditional grazing/haying systems less profitable. The Virginia Cooperative Extension Farm Enterprise budgets show that that the cost of hay accounts for over 50% of the cost of sustaining livestock annually. University of Kentucky shows that most cow-calf producers maximize their profitability by shifting from grazing 220 days to grazing 275 to 300 days. Extension agents working with livestock producers found that they could improve their profitability by at least 75 per cow by extending their grazing season. The same phenomenon applies to other types of grazing livestock. If ten percent of the livestock producers in the state adopted better grazing management to extend their grazing season by 60 days, profitability is expected for Virginia grazing livestock producers by over $5 million per year. Practices such as rotational grazing and stream exclusion are directly tied to National and State goals to improve water quality in the Chesapeake Bay. Virginia’s Phase III WIP (Chesapeake Bay Watershed Improvement Plan) seeks the exclusion of livestock from all perennial streams and achieving good rotational grazing practices on 347,000 acres of pasture. A number of agencies and private sector groups have been providing cost share and technical guidance to incentivize livestock stream exclusion and the installation of pasture management infrastructure. Installation is only part of the challenge. Farmers also need to be taught how to how to manage the system in a profitable manner and have been slow to adopt good pasture management practices. Preliminary data show that 87% of Virginia’s cow-calf producers manage their grasslands using traditional methods. Only six percent have extended their grazing season beyond 265 days

    High source levels and small active space of high-pitched song in bowhead whales (Balaena mysticetus)

    Get PDF
    © The Author(s), 2012. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Public Library of Science, doi:10.1371/journal.pone.0052072.The low-frequency, powerful vocalizations of blue and fin whales may potentially be detected by conspecifics across entire ocean basins. In contrast, humpback and bowhead whales produce equally powerful, but more complex broadband vocalizations composed of higher frequencies that suffer from higher attenuation. Here we evaluate the active space of high frequency song notes of bowhead whales (Balaena mysticetus) in Western Greenland using measurements of song source levels and ambient noise. Four independent, GPS-synchronized hydrophones were deployed through holes in the ice to localize vocalizing bowhead whales, estimate source levels and measure ambient noise. The song had a mean apparent source level of 185±2 dB rms re 1 µPa @ 1 m and a high mean centroid frequency of 444±48 Hz. Using measured ambient noise levels in the area and Arctic sound spreading models, the estimated active space of these song notes is between 40 and 130 km, an order of magnitude smaller than the estimated active space of low frequency blue and fin whale songs produced at similar source levels and for similar noise conditions. We propose that bowhead whales spatially compensate for their smaller communication range through mating aggregations that co-evolved with broadband song to form a complex and dynamic acoustically mediated sexual display.This work was funded by the Oticon Foundation (grant # 08-3469 to Arctic Station, OT). OT and MC were additionally funded by AP Møller og Hustru Chastine Mc-Kinney Møllers Fond til almene Formaal, MS by a PhD scholarship from the Oticon Foundation, FHJ by a Danish Council for Independent Research, Natural Sciences post-doctoral grant, SEP by a grant from the U.S. Office of Naval Research, and PTM by frame grants from the Danish Natural Science Research Council

    Exploring movement patterns and changing distributions of baleen whales in the western North Atlantic using a decade of passive acoustic data

    Get PDF
    © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Davis, G. E., Baumgartner, M. F., Corkeron, P. J., Bell, J., Berchok, C., Bonnell, J. M., Thornton, J. B., Brault, S., Buchanan, G. A., Cholewiak, D. M., Clark, C. W., Delarue, J., Hatch, L. T., Klinck, H., Kraus, S. D., Martin, B., Mellinger, D. K., Moors-Murphy, H., Nieukirk, S., Nowacek, D. P., Parks, S. E., Parry, D., Pegg, N., Read, A. J., Rice, A. N., Risch, D., Scott, A., Soldevilla, M. S., Stafford, K. M., Stanistreet, J. E., Summers, E., Todd, S., & Van Parijs, S. M. Exploring movement patterns and changing distributions of baleen whales in the western North Atlantic using a decade of passive acoustic data. Global Change Biology, (2020): 1-30, doi:10.1111/gcb.15191.Six baleen whale species are found in the temperate western North Atlantic Ocean, with limited information existing on the distribution and movement patterns for most. There is mounting evidence of distributional shifts in many species, including marine mammals, likely because of climate‐driven changes in ocean temperature and circulation. Previous acoustic studies examined the occurrence of minke (Balaenoptera acutorostrata ) and North Atlantic right whales (NARW; Eubalaena glacialis ). This study assesses the acoustic presence of humpback (Megaptera novaeangliae ), sei (B. borealis ), fin (B. physalus ), and blue whales (B. musculus ) over a decade, based on daily detections of their vocalizations. Data collected from 2004 to 2014 on 281 bottom‐mounted recorders, totaling 35,033 days, were processed using automated detection software and screened for each species' presence. A published study on NARW acoustics revealed significant changes in occurrence patterns between the periods of 2004–2010 and 2011–2014; therefore, these same time periods were examined here. All four species were present from the Southeast United States to Greenland; humpback whales were also present in the Caribbean. All species occurred throughout all regions in the winter, suggesting that baleen whales are widely distributed during these months. Each of the species showed significant changes in acoustic occurrence after 2010. Similar to NARWs, sei whales had higher acoustic occurrence in mid‐Atlantic regions after 2010. Fin, blue, and sei whales were more frequently detected in the northern latitudes of the study area after 2010. Despite this general northward shift, all four species were detected less on the Scotian Shelf area after 2010, matching documented shifts in prey availability in this region. A decade of acoustic observations have shown important distributional changes over the range of baleen whales, mirroring known climatic shifts and identifying new habitats that will require further protection from anthropogenic threats like fixed fishing gear, shipping, and noise pollution.We thank Chris Pelkie, David Wiley, Michael Thompson, Chris Tessaglia‐Hymes, Eric Matzen, Chris Tremblay, Lance Garrison, Anurag Kumar, John Hildebrand, Lynne Hodge, Russell Charif, Kathleen Dudzinski, and Ann Warde for help with project planning, field work support, and data management. For all the support and advice, thanks to the NEFSC Protected Species Branch, especially the passive acoustics group, Josh Hatch, and Leah Crowe. We thank the field and crew teams on all the ships that helped in the numerous deployments and recoveries. This research was funded and supported by many organizations, specified by projects as follows: data recordings from region 1 were provided by K. Stafford (funding: National Science Foundation #NSF‐ARC 0532611). Region 2 data: D. K. Mellinger and S. Nieukirk, National Oceanic and Atmospheric Administration (NOAA) PMEL contribution #5055 (funding: NOAA and the Office of Naval Research #N00014–03–1–0099, NOAA #NA06OAR4600100, US Navy #N00244‐08‐1‐0029, N00244‐09‐1‐0079, and N00244‐10‐1‐0047). Region 3A data: D. Risch (funding: NOAA and Navy N45 programs). Region 3 data: H. Moors‐Murphy and Fisheries and Oceans Canada (2005–2014 data), and the Whitehead Lab of Dalhousie University (eastern Scotian Shelf data; logistical support by A. Cogswell, J. Bartholette, A. Hartling, and vessel CCGS Hudson crew). Emerald Basin and Roseway Basin Guardbuoy data, deployment, and funding: Akoostix Inc. Region 3 Emerald Bank and Roseway Basin 2004 data: D. K. Mellinger and S. Nieukirk, NOAA PMEL contribution #5055 (funding: NOAA). Region 4 data: S. Parks (funding: NOAA and Cornell University) and E. Summers, S. Todd, J. Bort Thornton, A. N. Rice, and C. W. Clark (funding: Maine Department of Marine Resources, NOAA #NA09NMF4520418, and #NA10NMF4520291). Region 5 data: S. M. Van Parijs, D. Cholewiak, L. Hatch, C. W. Clark, D. Risch, and D. Wiley (funding: National Oceanic Partnership Program (NOPP), NOAA, and Navy N45). Region 6 data: S. M. Van Parijs and D. Cholewiak (funding: Navy N45 and Bureau of Ocean and Energy Management (BOEM) Atlantic Marine Assessment Program for Protected Species [AMAPPS] program). Region 7 data: A. N. Rice, H. Klinck, A. Warde, B. Martin, J. Delarue, and S. Kraus (funding: New York State Department of Environmental Conservation, Massachusetts Clean Energy Center, and BOEM). Region 8 data: G. Buchanan, and K. Dudzinski (funding: New Jersey Department of Environmental Protection and the New Jersey Clean Energy Fund) and A. N. Rice, C. W. Clark, and H. Klinck (funding: Center for Conservation Bioacoustics at Cornell University and BOEM). Region 9 data: J. E. Stanistreet, J. Bell, D. P. Nowacek, A. J. Read, and S. M. Van Parijs (funding: NOAA and US Fleet Forces Command). Region 10 data: L. Garrison, M. Soldevilla, C. W. Clark, R. A. Chariff, A. N. Rice, H. Klinck, J. Bell, D. P. Nowacek, A. J. Read, J. Hildebrand, A. Kumar, L. Hodge, and J. E. Stanistreet (funding: US Fleet Forces Command, BOEM, NOAA, and NOPP). Region 11 data: C. Berchok as part of a collaborative project led by the Fundacion Dominicana de Estudios Marinos, Inc. (Dr. Idelisa Bonnelly de Calventi; funding: The Nature Conservancy [Elianny Dominguez]) and D. Risch (funding: World Wildlife Fund, NOAA, and Dutch Ministry of Economic Affairs)

    Pharmacotherapy of Schizophrenic Patients: Preponderance of Off-Label Drug Use

    Get PDF
    Multiple drug class combinations are often prescribed for the treatment of schizophrenia, although antipsychotic monotherapy reflects FDA labeling and scientific justification for combinations is highly variable. This study was performed to gain current data regarding drug treatment of schizophrenia as practiced in the community and to assess the frequencies of off-label drug class combinations. 200 DSM IV-diagnosed schizophrenic patients recruited from community treatment sources participated in this cross-sectional study of community based schizophrenic patients. Drug class categories include First and Second Generation Antipsychotic drugs (FGA and SGA, respectively), mood stabilizers, antidepressants and anti-anxiety drugs. 25.5% of patients received antipsychotic monotherapy; 70% of patients received an antipsychotic and another drug class. A total of 42.5% of patients received more than one antipsychotic drug. The most common drug class combination was antipsychotic and a mood stabilizer. Stepwise linear discriminant function analysis identified the diagnosis of schizoaffective schizophrenia, history of having physically hurt someone and high scores on the General Portion of the PANSS rating scale predicted the combined use of an antipsychotic drug and a mood stabilizer. “Real world” pharmacotherapy of schizophrenia has developed its own established practice that is predominantly off-label and may have outstripped current data support. The economic implications for public sector payers are substantial as well as for the revenue of the pharmaceutical industry, whose promotion of off-label drug use is an increasingly problematic. These data are consistent with the recognition of the therapeutic limitations of both first and second generation antipsychotic drugs

    The effect of autonomy, training opportunities, age and salaries on job satisfaction in the South East Asian retail petroleum industry

    Get PDF
    South East Asian petroleum retailers are under considerable pressure to improve service quality by reducing turnover. An empirical methodology from this industry determined the extent to which job characteristics, training opportunities, age and salary influenced the level of job satisfaction, an indicator of turnover. Responses are reported on a random sample of 165 site employees (a 68% response rate) of a Singaporean retail petroleum firm. A restricted multivariate regression model of autonomy and training opportunities explained the majority (35.4%) of the variability of job satisfaction. Age did not moderate these relationships, except for employees >21 years of age, who reported enhanced job satisfaction with additional salary. Human Capital theory, Life Cycle theory and Job Enrichment theory are invoked and explored in the context of these findings in the South East Asian retail petroleum industry. In the South East Asian retail petroleum industry, jobs providing employees with the opportunity to undertake a variety of tasks that enhanced the experienced meaningfulness of work are likely to promote job satisfaction, reduce turnover and increase the quality of service

    Linking Proteomic and Transcriptional Data through the Interactome and Epigenome Reveals a Map of Oncogene-induced Signaling

    Get PDF
    Cellular signal transduction generally involves cascades of post-translational protein modifications that rapidly catalyze changes in protein-DNA interactions and gene expression. High-throughput measurements are improving our ability to study each of these stages individually, but do not capture the connections between them. Here we present an approach for building a network of physical links among these data that can be used to prioritize targets for pharmacological intervention. Our method recovers the critical missing links between proteomic and transcriptional data by relating changes in chromatin accessibility to changes in expression and then uses these links to connect proteomic and transcriptome data. We applied our approach to integrate epigenomic, phosphoproteomic and transcriptome changes induced by the variant III mutation of the epidermal growth factor receptor (EGFRvIII) in a cell line model of glioblastoma multiforme (GBM). To test the relevance of the network, we used small molecules to target highly connected nodes implicated by the network model that were not detected by the experimental data in isolation and we found that a large fraction of these agents alter cell viability. Among these are two compounds, ICG-001, targeting CREB binding protein (CREBBP), and PKF118–310, targeting β-catenin (CTNNB1), which have not been tested previously for effectiveness against GBM. At the level of transcriptional regulation, we used chromatin immunoprecipitation sequencing (ChIP-Seq) to experimentally determine the genome-wide binding locations of p300, a transcriptional co-regulator highly connected in the network. Analysis of p300 target genes suggested its role in tumorigenesis. We propose that this general method, in which experimental measurements are used as constraints for building regulatory networks from the interactome while taking into account noise and missing data, should be applicable to a wide range of high-throughput datasets.National Science Foundation (U.S.) (DB1-0821391)National Institutes of Health (U.S.) (Grant U54-CA112967)National Institutes of Health (U.S.) (Grant R01-GM089903)National Institutes of Health (U.S.) (P30-ES002109
    corecore