7,620 research outputs found
Many-body theory of electronic transport in single-molecule heterojunctions
A many-body theory of molecular junction transport based on nonequilibrium
Green's functions is developed, which treats coherent quantum effects and
Coulomb interactions on an equal footing. The central quantity of the many-body
theory is the Coulomb self-energy matrix of the junction.
is evaluated exactly in the sequential tunneling limit, and
the correction due to finite tunneling width is evaluated self-consistently
using a conserving approximation based on diagrammatic perturbation theory on
the Keldysh contour. Our approach reproduces the key features of both the
Coulomb blockade and coherent transport regimes simultaneously in a single
unified transport theory. As a first application of our theory, we have
calculated the thermoelectric power and differential conductance spectrum of a
benzenedithiol-gold junction using a semi-empirical -electron Hamiltonian
that accurately describes the full spectrum of electronic excitations of the
molecule up to 8--10eV.Comment: 13 pages, 7 figure
Coherent Magnetotransport Through an Artificial Molecule
The conductance in an extended multiband Hubbard model describing linear
arrays of up to ten quantum dots is calculated via a Lanczos technique. A
pronounced suppression of certain resonant conductance peaks in an applied
magnetic field due to a density-dependent spin-polarization transition is
predicted to be a clear signature of a coherent ``molecular'' wavefunction in
the array. A many-body enhancement of localization is predicted to give rise to
a {\em giant magnetoconductance} effect in systems with magnetic scattering.Comment: 4 pages, REVTEX 3.0, 5 figures included as postscript file
Parity-locking effect in a strongly-correlated ring
Orbital magnetism in an integrable model of a multichannel ring with
long-ranged electron-electron interactions is investigated. In a noninteracting
multichannel system, the response to an external magnetic flux is the sum of
many diamagnetic and paramagnetic contributions, but we find that for
sufficiently strong correlations, the contributions of all channels add
constructively, leading to a parity (diamagnetic or paramagnetic) which depends
only on the total number of electrons. Numerical results confirm that this
parity-locking effect is robust with respect to subband mixing due to disorder.Comment: part of lecture presented in the conference ``Unconventional quantum
liquids", appearing in Z. Phy
Comment on "Density Functional Simulation of a Breaking Nanowire"
In a recent Letter, Nakamura et al. [Phys. Rev. Lett. 82, 1538 (1999)]
described first principles calculations for a breaking Na nanocontact. Their
system consists of a periodic one-dimensional array of supercells, each of
which contains 39 Na atoms, originally forming a straight, crystalline wire
with a length of 6 atoms. The system is elongated by increasing the length of
the unit cell. At each step, the atomic configuration is relaxed to a new local
equilibrium, and the tensile force is evaluated from the change of the total
energy with elongation. Aside from a discontinuity of the force occuring at the
transition from a crytalline to an amorphous configuration during the early
stages of elongation, they were unable to identify any simple correlations
between the force and the number of electronic modes transmitted through the
contact. An important question is whether their model is realistic, i.e.,
whether it can be compared to experimental results obtained for a single
nanocontact between two macroscopic pieces of metal. In this Comment, we
demonstrate that with such a small unit cell, the interference effects between
neighboring contacts are of the same size as the force oscillations in a single
nanocontact.Comment: 1 pag
Correlated charge polarization in a chain of coupled quantum dots
Coherent charge transfer in a linear array of tunnel-coupled quantum dots,
electrostatically coupled to external gates, is investigated using the Bethe
ansatz for a symmetrically biased Hubbard chain. Charge polarization in this
correlated system is shown to proceed via two distinct processes: formation of
bound states in the metallic phase, and charge transfer processes corresponding
to a superposition of antibound states at opposite ends of the chain in the
Mott-insulating phase. The polarizability in the insulating phase of the chain
exhibits a universal scaling behavior, while the polarization charge in the
metallic phase of the model is shown to be quantized in units of .Comment: 9 pages, 3 figures, 1 tabl
- …