71 research outputs found

    Aesthetics and Psychological Effects of Fractal Based Design

    Full text link
    Highly prevalent in nature, fractal patterns possess self-similar components that repeat at varying size scales. The perceptual experience of human-made environments can be impacted with inclusion of these natural patterns. Previous work has demonstrated consistent trends in preference for and complexity estimates of fractal patterns. However, limited information has been gathered on the impact of other visual judgments. Here we examine the aesthetic and perceptual experience of fractal ‘global-forest’ designs already installed in humanmade spaces and demonstrate how fractal pattern components are associated with positive psychological experiences that can be utilized to promote occupant wellbeing. These designs are composite fractal patterns consisting of individual fractal ‘tree-seeds’ which combine to create a ‘global fractal forest.’ The local ‘tree-seed’ patterns, global configuration of tree-seed locations, and overall resulting ‘global-forest’ patterns have fractal qualities. These designs span multiple mediums yet are all intended to lower occupant stress without detracting from the function and overall design of the space. In this series of studies, we first establish divergent relationships between various visual attributes, with pattern complexity, preference, and engagement ratings increasing with fractal complexity compared to ratings of refreshment and relaxation which stay the same or decrease with complexity. Subsequently, we determine that the local constituent fractal (‘tree-seed’) patterns contribute to the perception of the overall fractal design, and address how to balance aesthetic and psychological effects (such as individual experiences of perceived engagement and relaxation) in fractal design installations. This set of studies demonstrates that fractal preference is driven by a balance between increased arousal (desire for engagement and complexity) and decreased tension (desire for relaxation or refreshment). Installations of these composite mid-high complexity ‘global-forest’ patterns consisting of ‘tree-seed’ components balance these contrasting needs, and can serve as a practical implementation of biophilic patterns in human-made environments to promote occupant wellbeing

    Anisotropic conductivity of Nd_{1.85}Ce_{0.15}CuO_{4-\delta} films at submillimeter wavelengths

    Full text link
    The anisotropic conductivity of thin Nd1.85_{1.85}Ce0.15_{0.15}CuO4δ_{4-\delta} films was measured in the frequency range 8 cm1<ν<^{-1}<\nu < 40 cm1^{-1} and for temperatures 4 K <T<300<T<300 K. A tilted sample geometry allowed to extract both, in-plane and c-axis properties. The in-plane quasiparticle scattering rate remains unchanged as the sample becomes superconducting. The temperature dependence of the in-plane conductivity is reasonably well described using the Born limit for a d-wave superconductor. Below T_{{\rm C}%} the c-axis dielectric constant ϵ1c\epsilon_{1c} changes sign at the screened c-axis plasma frequency. The temperature dependence of the c-axis conductivity closely follows the linear in T behavior within the plane.Comment: 4 pages, 4 figure

    Strength of Correlations in electron and hole doped cuprates

    Full text link
    High temperature superconductivity was achieved by introducing holes in a parent compound consisting of copper oxide layers separated by spacer layers. It is possible to dope some of the parent compounds with electrons, and their physical properties are bearing some similarities but also significant differences from the hole doped counterparts. Here, we use a recently developed first principles method, to study the electron doped cuprates and elucidate the deep physical reasons why their behavior is so different than the hole doped materials. We find that electron doped compounds are Slater insulators, e.g. a material where the insulating behavior is the result of the presence of magnetic long range order. This is in sharp contrast with the hole doped materials, where the parent compound is a Mott charge transfer insulator, namely a material which is insulating due to the strong electronic correlations but not due to the magnetic order.Comment: submitted to Nature Physic

    Novel vortex lattice transition in d-wave superconductors

    Full text link
    We study the vortex state in a magnetic field parallel to the cc axis in the framework of the extended Ginzburg Landau equation. We find the vortex acquires a fourfold modulation proportional to cos(4ϕ)\cos(4\phi) where ϕ\phi is the angle r{\bf r} makes with the aa-axis. This term gives rise to an attractive interaction between two vortices when they are aligned parallel to (1,1,0)(1,1,0) or (1,1,0)(1,-1,0). We predict the first order vortex lattice transition at B=Hcrκ1Hc2(t)B=H_{cr}\sim \kappa^{-1} H_{c2}(t) from triangular into the square lattice tilted by 4545^\circ from the aa axis. This gives the critical field HcrH_{cr} a few Tesla for YBCO and Bi2212 monocrystals at low temperatures (T10KT\leq 10 K).Comment: 6 pages, 4 figure

    Microwave Electrodynamics of Electron-Doped Cuprate Superconductors

    Full text link
    We report microwave cavity perturbation measurements of the temperature dependence of the penetration depth, lambda(T), and conductivity, sigma(T) of Pr_{2-x}Ce_{x}CuO_{4-delta} (PCCO) crystals, as well as parallel-plate resonator measurements of lambda(T) in PCCO thin films. Penetration depth measurements are also presented for a Nd_{2-x}Ce_{x}CuO_{4-delta} (NCCO) crystal. We find that delta-lambda(T) has a power-law behavior for T<T_c/3, and conclude that the electron-doped cuprate superconductors have nodes in the superconducting gap. Furthermore, using the surface impedance, we have derived the real part of the conductivity, sigma_1(T), below T_c and found a behavior similar to that observed in hole-doped cuprates.Comment: 4 pages, 4 figures, 1 table. Submitted to Physical Review Letters revised version: new figures, sample characteristics added to table, general clarification give

    Nonmonotonic d_{x^2-y^2} Superconducting Order Parameter in Nd_{2-x}Ce_xCuO_4

    Full text link
    Low energy polarized electronic Raman scattering of the electron doped superconductor Nd_1.85Ce_0.15CuO_4 (T_c=22 K) has revealed a nonmonotonic d_{x^2-y^2} superconducting order parameter. It has a maximum gap of 4.4 k_BT_c at Fermi surface intersections with antiferromagnetic Brillouin zone (the ``hot spots'') and a smaller gap of 3.3 k_BT_c at fermionic Brillouin zone boundaries. The gap enhancement in the vicinity of the ``hot spots'' emphasizes role of antiferromagnetic fluctuations and similarity in the origin of superconductivity for electron- and hole-doped cuprates.Comment: 4 pages, 4 figure

    Electron Dynamics in Nd1.85_{1.85}Ce.15_{.15}CuO4+δ_{4+\delta}: Evidence for the Pseudogap State and Unconventional c-axis Response

    Full text link
    Infrared reflectance measurements were made with light polarized along the a- and c-axis of both superconducting and antiferromagnetic phases of electron doped Nd1.85_{1.85}Ce.15_{.15}CuO4+δ_{4+\delta}. The results are compared to characteristic features of the electromagnetic response in hole doped cuprates. Within the CuO2_2 planes the frequency dependent scattering rate, 1/τ(ω)\tau(\omega), is depressed below \sim 650 cm1^{-1}; this behavior is a hallmark of the pseudogap state. While in several hole doped compounds the energy scales associated with the pseudogap and superconducting states are quite close, we are able to show that in Nd1.85_{1.85}Ce.15_{.15}CuO4+δ_{4+\delta} the two scales differ by more than one order of magnitude. Another feature of the in-plane charge response is a peak in the real part of the conductivity, σ1(ω)\sigma_1(\omega), at 50-110 cm1^{-1} which is in sharp contrast with the Drude-like response where σ1(ω)\sigma_1(\omega) is centered at ω=0\omega=0. This latter effect is similar to what is found in disordered hole doped cuprates and is discussed in the context of carrier localization. Examination of the c-axis conductivity gives evidence for an anomalously broad frequency range from which the interlayer superfluid is accumulated. Compelling evidence for the pseudogap state as well as other characteristics of the charge dynamics in Nd1.85_{1.85}Ce.15_{.15}CuO4+δ_{4+\delta} signal global similarities of the cuprate phase diagram with respect to electron and hole doping.Comment: Submitted to PR

    Interplay of structural and electronic phase separation in single crystalline La(2)CuO(4.05) studied by neutron and Raman scattering

    Full text link
    We report a neutron and Raman scattering study of a single-crystal of La(2)CuO(4.05) prepared by high temperature electrochemical oxidation. Elastic neutron scattering measurements show the presence of two phases, corresponding to the two edges of the first miscibility gap, all the way up to 300 K. An additional oxygen redistribution, driven by electronic energies, is identified at 250 K in Raman scattering (RS) experiments by the simultaneous onset of two-phonon and two-magnon scattering, which are fingerprints of the insulating phase. Elastic neutron scattering measurements show directly an antiferromagnetic ordering below a N\'eel temperature of T_N =210K. The opening of the superconducting gap manifests itself as a redistribution of electronic Raman scattering below the superconducting transition temperature, T_c = 24K. A pronounced temperature-dependent suppression of the intensity of the (100) magnetic Bragg peak has been detected below T_c. We ascribe this phenomenon to a change of relative volume fraction of superconducting and antiferromagnetic phases with decreasing temperature caused by a form of a superconducting proximity effect.Comment: 9 pages, including 9 eps figures, submitted to PR

    Identification of the bulk pairing symmetry in high-temperature superconductors: Evidence for an extended s-wave with eight line nodes

    Full text link
    we identify the intrinsic bulk pairing symmetry for both electron and hole-doped cuprates from the existing bulk- and nearly bulk-sensitive experimental results such as magnetic penetration depth, Raman scattering, single-particle tunneling, Andreev reflection, nonlinear Meissner effect, neutron scattering, thermal conductivity, specific heat, and angle-resolved photoemission spectroscopy. These experiments consistently show that the dominant bulk pairing symmetry in hole-doped cuprates is of extended s-wave with eight line nodes, and of anisotropic s-wave in electron-doped cuprates. The proposed pairing symmetries do not contradict some surface- and phase-sensitive experiments which show a predominant d-wave pairing symmetry at the degraded surfaces. We also quantitatively explain the phase-sensitive experiments along the c-axis for both Bi_{2}Sr_{2}CaCu_{2}O_{8+y} and YBa_{2}Cu_{3}O_{7-y}.Comment: 11 pages, 9 figure
    corecore