62 research outputs found

    Automated generation of gene summaries at the Alliance of Genome Resources

    Get PDF
    Short paragraphs that describe gene function, referred to as gene summaries, are valued by users of biological knowledgebases for the ease with which they convey key aspects of gene function. Manual curation of gene summaries, while desirable, is difficult for knowledgebases to sustain. We developed an algorithm that uses curated, structured gene data at the Alliance of Genome Resources (Alliance; www.alliancegenome.org) to automatically generate gene summaries that simulate natural language. The gene data used for this purpose include curated associations (annotations) to ontology terms from the Gene Ontology, Disease Ontology, model organism knowledgebase (MOK)-specific anatomy ontologies and Alliance orthology data. The method uses sentence templates for each data category included in the gene summary in order to build a natural language sentence from the list of terms associated with each gene. To improve readability of the summaries when numerous gene annotations are present, we developed a new algorithm that traverses ontology graphs in order to group terms by their common ancestors. The algorithm optimizes the coverage of the initial set of terms and limits the length of the final summary, using measures of information content of each ontology term as a criterion for inclusion in the summary. The automated gene summaries are generated with each Alliance release, ensuring that they reflect current data at the Alliance. Our method effectively leverages category-specific curation efforts of the Alliance member databases to create modular, structured and standardized gene summaries for seven member species of the Alliance. These automatically generated gene summaries make cross-species gene function comparisons tenable and increase discoverability of potential models of human disease. In addition to being displayed on Alliance gene pages, these summaries are also included on several MOK gene pages

    Automated generation of gene summaries at the Alliance of Genome Resources.

    Get PDF
    Short paragraphs that describe gene function, referred to as gene summaries, are valued by users of biological knowledgebases for the ease with which they convey key aspects of gene function. Manual curation of gene summaries, while desirable, is difficult for knowledgebases to sustain. We developed an algorithm that uses curated, structured gene data at the Alliance of Genome Resources (Alliance; www.alliancegenome.org) to automatically generate gene summaries that simulate natural language. The gene data used for this purpose include curated associations (annotations) to ontology terms from the Gene Ontology, Disease Ontology, model organism knowledgebase (MOK)-specific anatomy ontologies and Alliance orthology data. The method uses sentence templates for each data category included in the gene summary in order to build a natural language sentence from the list of terms associated with each gene. To improve readability of the summaries when numerous gene annotations are present, we developed a new algorithm that traverses ontology graphs in order to group terms by their common ancestors. The algorithm optimizes the coverage of the initial set of terms and limits the length of the final summary, using measures of information content of each ontology term as a criterion for inclusion in the summary. The automated gene summaries are generated with each Alliance release, ensuring that they reflect current data at the Alliance. Our method effectively leverages category-specific curation efforts of the Alliance member databases to create modular, structured and standardized gene summaries for seven member species of the Alliance. These automatically generated gene summaries make cross-species gene function comparisons tenable and increase discoverability of potential models of human disease. In addition to being displayed on Alliance gene pages, these summaries are also included on several MOK gene pages

    Term Matrix: a novel Gene Ontology annotation quality control system based on ontology term co-annotation patterns.

    Get PDF
    Biological processes are accomplished by the coordinated action of gene products. Gene products often participate in multiple processes, and can therefore be annotated to multiple Gene Ontology (GO) terms. Nevertheless, processes that are functionally, temporally and/or spatially distant may have few gene products in common, and co-annotation to unrelated processes probably reflects errors in literature curation, ontology structure or automated annotation pipelines. We have developed an annotation quality control workflow that uses rules based on mutually exclusive processes to detect annotation errors, based on and validated by case studies including the three we present here: fission yeast protein-coding gene annotations over time; annotations for cohesin complex subunits in human and model species; and annotations using a selected set of GO biological process terms in human and five model species. For each case study, we reviewed available GO annotations, identified pairs of biological processes which are unlikely to be correctly co-annotated to the same gene products (e.g. amino acid metabolism and cytokinesis), and traced erroneous annotations to their sources. To date we have generated 107 quality control rules, and corrected 289 manual annotations in eukaryotes and over 52 700 automatically propagated annotations across all taxa

    Yeast:One cell, one reference sequence, many genomes?

    Get PDF
    The genome of Saccharomyces cerevisiae – brewer’s or baker’s yeast – was the first eukaryotic genome to be sequenced in 1996. The identity of that yeast genome has been not just a product of sequencing, but also of its use after sequencing and particularly of its mobilization in scientific literature. We ask “what is the yeast genome?” as an empirical question by investigating “the yeast genome” as a discursive entity. Analyzing publications that followed sequencing points to several “yeast genomes” existing side-by-side: genomes as physical molecules, digital texts, and a historic event. Resolving this unified-yet-multiple “genome” helps make sense of contemporary developments in yeast genomics such as the synthetic yeast project, in which apparently “the same” genome occupies multiple roles and locations, and points to the utility of examining specific non-human genomes independent of the Human Genome Project

    Annotation of gene product function from high-throughput studies using the Gene Ontology.

    Get PDF
    High-throughput studies constitute an essential and valued source of information for researchers. However, high-throughput experimental workflows are often complex, with multiple data sets that may contain large numbers of false positives. The representation of high-throughput data in the Gene Ontology (GO) therefore presents a challenging annotation problem, when the overarching goal of GO curation is to provide the most precise view of a gene's role in biology. To address this, representatives from annotation teams within the GO Consortium reviewed high-throughput data annotation practices. We present an annotation framework for high-throughput studies that will facilitate good standards in GO curation and, through the use of new high-throughput evidence codes, increase the visibility of these annotations to the research community

    Fungal BLAST and Model Organism BLASTP Best Hits: new comparison resources at the Saccharomyces Genome Database (SGD)

    Get PDF
    The Saccharomyces Genome Database (SGD; http://www.yeastgenome.org/) is a scientific database of gene, protein and genomic information for the yeast Saccharomyces cerevisiae. SGD has recently developed two new resources that facilitate nucleotide and protein sequence comparisons between S.cerevisiae and other organisms. The Fungal BLAST tool provides directed searches against all fungal nucleotide and protein sequences available from GenBank, divided into categories according to organism, status of completeness and annotation, and source. The Model Organism BLASTP Best Hits resource displays, for each S.cerevisiae protein, the single most similar protein from several model organisms and presents links to the database pages of those proteins, facilitating access to curated information about potential orthologs of yeast proteins

    Expanded protein information at SGD: new pages and proteome browser

    Get PDF
    The recent explosion in protein data generated from both directed small-scale studies and large-scale proteomics efforts has greatly expanded the quantity of available protein information and has prompted the Saccharomyces Genome Database (SGD; ) to enhance the depth and accessibility of protein annotations. In particular, we have expanded ongoing efforts to improve the integration of experimental information and sequence-based predictions and have redesigned the protein information web pages. A key feature of this redesign is the development of a GBrowse-derived interactive Proteome Browser customized to improve the visualization of sequence-based protein information. This Proteome Browser has enabled SGD to unify the display of hidden Markov model (HMM) domains, protein family HMMs, motifs, transmembrane regions, signal peptides, hydropathy plots and profile hits using several popular prediction algorithms. In addition, a physico-chemical properties page has been introduced to provide easy access to basic protein information. Improvements to the layout of the Protein Information page and integration of the Proteome Browser will facilitate the ongoing expansion of sequence-specific experimental information captured in SGD, including post-translational modifications and other user-defined annotations. Finally, SGD continues to improve upon the availability of genetic and physical interaction data in an ongoing collaboration with BioGRID by providing direct access to more than 82 000 manually-curated interactions
    • 

    corecore