8 research outputs found

    BSG (CD147) Serum Level and Genetic Variants Are Associated with Overall Survival in Acute Myeloid Leukaemia

    No full text
    Basigin (BSG, CD147) is a multifunctional protein involved in cancer cell survival, mostly by controlling lactate transport through its interaction with monocarboxylate transporters (MCTs) such as MCT1. Previous studies have found that single nucleotide polymorphisms (SNPs) in the gene coding for BSG and MCT1, as well as levels of the soluble form of BSG (sBSG), are potential biomarkers in various diseases. The goal of this study was to confirm BSG and MCT1 RNA overexpression in AML cell lines, as well as to analyse soluble BSG levels and selected BSG/MCT1 genetic variants as potential biomarkers in AML patients. We found that BSG and MCT1 were overexpressed in most AML cell lines. Soluble BSG was increased in AML patients compared to healthy controls, and correlated with various clinical parameters. High soluble BSG was associated with worse overall survival, higher bone marrow blast percentage, and higher white blood cell count. BSG SNPs rs4919859 and rs4682, as well as MCT1 SNP rs1049434, were also associated with overall survival of AML patients. In conclusion, this study confirms the importance of BSG/MCT1 in AML, and suggests that soluble BSG and BSG/MCT1 genetic variants may act as potential AML biomarkers

    Vitamin D Metabolite Profile in Cholecalciferol- or Calcitriol-Supplemented Healthy and Mammary Gland Tumor-Bearing Mice

    No full text
    To analyze if the prometastatic activity of calcitriol (active vitamin D3 metabolite), which was previously observed in a 4T1 breast cancer model, is also found in other breast cancers, and to assess the impact of various schemes of vitamin D supply, we used 4T1 and E0771 mouse metastatic and 67NR nonmetastatic cells in this study. BALB/c and C57BL/6 healthy and tumor-bearing mice were exposed to a control (1000 IU), low- (100 IU), and high- (5000 IU) vitamin D3 diets. Additionally, from day 7 of tumor transplantation, the 1000 and 100 IU groups were gavaged with calcitriol (+cal). After 8 weeks of feeding, plasma levels of 25(OH)D3, 24,25(OH)2D3, and 3-epi-25(OH)D3 were significantly lower in calcitriol-treated and vitamin D-deficient groups than in the control, whereas the levels of all metabolites were increased in the 5000 IU group. The ratio of 25(OH)D3:24,25(OH)2D3 was increased in both calcitriol-treated groups, whereas the ratio of 25(OH)D3:3-epi-25(OH)D3 was increased only in the 100 IU group but decreased in the 5000 IU group. In contrast to E0771, 4T1 lung metastasis was accelerated in all vitamin D-supplemented mice, as well as in the deficient group with an increased inflammatory response. 67NR tumor growth was transiently inhibited in the 1000 IU+cal group, but single metastases were observed in the 5000 and 100 IU groups. Based on the results, we conclude that various schemes of vitamin D supply and vitamin D deficiency led to similar metabolite profiles irrespective of the mice strain and tumor burden. However, depending on the type of breast cancer, different effects on tumor growth and metastasis were noticed

    Modulation of Fibroblast Activity via Vitamin D<sub>3</sub> Is Dependent on Tumor Type—Studies on Mouse Mammary Gland Cancer

    No full text
    Vitamin D3 and its analogs are known to modulate the activity of fibroblasts under various disease conditions. However, their impact on cancer-associated fibroblasts (CAFs) is yet to be fully investigated. The aim of this study was to characterize CAFs and normal fibroblasts (NFs) from the lung of mice bearing 4T1, 67NR, and E0771 cancers and healthy mice fed vitamin-D3-normal (1000 IU), -deficient (100 IU), and -supplemented (5000 IU) diets. The groups receiving control (1000 IU) and deficient diets (100 IU) were gavaged with calcitriol (+cal). In the 4T1-bearing mice from the 100 IU+cal group, increased NFs activation (increased α-smooth muscle actin, podoplanin, and tenascin C (TNC)) with a decreased blood flow in the tumor was observed, whereas the opposite effect was observed in the 5000 IU and 100 IU groups. CAFs from the 5000 IU group of E0771-bearing mice were activated with increased expression of podoplanin, platelet-derived growth factor receptor β, and TNC. In the 100 IU+cal group of E0771-bearing mice, a decreased blood flow was recorded with decreased expression of fibroblast growth factor 23 (FGF23) and C-C motif chemokine ligand 2 (CCL2) in tumors and increased expression of TNC on CAFs. In the 67NR model, the impact of vitamin D3 on blood flow or CAFs and lung NFs was not observed despite changes in plasma and/or tumor tissue concentrations of osteopontin (OPN), CCL2, transforming growth factor-β, vascular endothelial growth factor, and FGF23. In healthy mice, divergent effects of vitamin D3 supplementation/deficiency were observed, which lead to the creation of various body microenvironments depending on the mouse strain. Tumors developing in such microenvironments themselves modified the microenvironments by producing, for example, higher concentrations of OPN and stromal-cell-derived factor 1 (4T1), which influences the response to vitamin D3 supplementation/deficiency and calcitriol administration

    Calcitriol promotes M2 polarization of tumor-associated macrophages in 4T1 mouse mammary gland cancer via the induction of proinflammatory cytokines

    No full text
    Abstract Our research found that vitamin D3 (VD3) treatment increased lung metastasis in mice with 4T1 murine breast cancer (BC). This study aims to investigate the impact of VD3 on the activation of tumor-associated macrophages (TAMs) in BC. Mice bearing 4T1, E0771, 67NR BC cells, and healthy mice, were fed diets with varying VD3 contents (100—deficient, 1000—normal, and 5000 IU/kg—elevated). Some mice in the 1000 and 100 IU/kg groups received calcitriol. We studied bone metastasis and characterized TAMs and bone marrow-derived macrophages (BMDMs). 4T1 cells had higher bone metastasis potential in the 5000 IU/kg and calcitriol groups. In the same mice, an elevated tumor osteopontin level and M2 polarization of TAMs (MHCIIlow CD44high phenotype) were observed. Gene expression analysis confirmed M2 polarization of 4T1 (but not 67NR) TAMs and BMDMs, particularly in the 100 IU + cal group (increased Mrc1, Il23, and Il6). This polarization was likely due to COX-2/PGE2 induction in 4T1 calcitriol-treated cells, leading to increased proinflammatory cytokines like IL-6 and IL-23. Future studies will explore COX-2/PGE2 as a primary mediator of calcitriol-stimulated inflammation in the BC microenvironment, especially relevant for BC patients with VD3 deficiency and supplementation

    Dual effect of vitamin D3 on breast cancer-associated fibroblasts

    No full text
    Abstract Background Cancer-associated fibroblasts (CAFs) play an important role in the tumor microenvironment. Despite the well-known in vitro antitumoral effect of vitamin D3 (VD3), its impact on breast CAFs is almost unknown. In this study, we analyzed the ex vivo effects of calcitriol on CAFs isolated from breast cancer tissues. Methods CAFs were cultured with 1 and 10 nM calcitriol and their phenotype; gene expression, protein expression, and secretion were assessed. Calcitriol-treated CAFs-conditioned media (CM) were used to analyze the effect of CAFs on the migration and protein expression of MCF-7 and MDA-MB-231 cells. Results Tumor tissues from VD3-deficient patients exhibited lower levels of β-catenin and TGFβ1, along with higher levels of CYP24A1 compared to VD3-normal patients. In VD3-deficient patients, CAF infiltration was inversely associated with CYP24A1 levels and positively correlated with OPN levels. Calcitriol diminished CAFs’ viability, but this effect was weaker in premenopausal and VD3-normal patients. Calcitriol reduced mRNA expression of CCL2 , MMP9 , TNC, and increased PDPN , SPP1, and TIMP1. It also decreased the secretion of CCL2, TNC, and the activity of MMP-2, while increasing cellular levels of TIMP1 in CAFs from all patient groups. In nonmetastatic and postmenopausal patients, PDPN surface expression increased, and CAFs CM from these groups decreased MCF-7 cell migration after ex vivo calcitriol treatment. In premenopausal and VD3-deficient patients, calcitriol reduced IDO1 expression in CAFs. Calcitriol-treated CAFs CM from these patients decreased OPN expression in MCF-7 and/or MDA-MB-231 cells. However, in premenopausal patients, calcitriol-treated CAFs CM also decreased E-cadherin expression in both cell lines. Conclusion The effects of calcitriol on breast CAFs, both at the gene and protein levels, are complex, reflecting the immunosuppressive or procancer properties of CAFs. The anticancer polarization of CAFs following ex vivo calcitriol treatment may result from decreased CCL2, TNC (gene and protein), MMP9, and MMP-2, while the opposite effect may result from increased PDPN , TIMP1 (gene and protein), and SPP1. Despite these multifaceted effects of calcitriol on molecule expression, CAFs’ CMs from nonmetastatic and postmenopausal patients treated ex vivo with calcitriol decreased the migration of MCF-7 cells

    Relationship between Telomere Length, TERT Genetic Variability and TERT, TP53, SP1, MYC Gene Co-Expression in the Clinicopathological Profile of Breast Cancer

    No full text
    The molecular mechanisms of telomerase reverse transcriptase (TERT) upregulation in breast cancer (BC) are complex. We compared genetic variability within TERT and telomere length with the clinical data of patients with BC. Additionally, we assessed the expression of the TERT, MYC, TP53 and SP1 genes in BC patients and in BC organoids (3D cell cultures obtained from breast cancer tissues). We observed the same correlation in the blood of BC patients and in BC organoids between the expression of TERT and TP53. Only in BC patients was a correlation found between the expression of the TERT and MYC genes and between TP53 and MYC. We found associations between TERT genotypes (rs2735940 and rs10069690) and TP53 expression and telomere length. BC patients with the TT genotype rs2735940 have a shorter telomere length, but patients with A allele rs10069690 have a longer telomere length. BC patients with a short allele VNTR-MNS16A showed higher expression of the SP1 and had a longer telomere. Our results bring new insight into the regulation of TERT, MYC, TP53 and SP1 gene expression related to TERT genetic variability and telomere length. Our study also showed for the first time a similar relationship in the expression of the above genes in BC patients and in BC organoids. These findings suggest that TERT genetic variability, expression and telomere length might be useful biomarkers for BC, but their prognostic value may vary depending on the clinical parameters of BC patients and tumor aggressiveness

    Additional file 1 of Dual effect of vitamin D3 on breast cancer-associated fibroblasts

    No full text
    Additional file 1: Table S1. Selected clinical characteristics of the patients involved in the study. Table S2. Algorithm used in this study for scoring CAFs infiltration. Table S3. List of genes and corresponding probes used in screening PCR array cards. Table S4. CAFs statuses in tumor tissues from patients with different clinical characteristics. Figure S1. VDR, CYP27B1, CYP24A1 levels in tumor tissues from patients with different clinical characteristics. Figure S2. Uncropped blot images corresponding to cropped blots presented in Figure 1 in the manuscript: OPN, TGFβ and β-catenin levels in tumor tissues from patients with different clinical characteristics. Figure S3. Uncropped blot images corresponding to cropped blots presented in Figure S1 in the Supplementary Materials: VDR, CYP27B1, CYP24A1 levels in tumor tissues from patients with different clinical characteristics. Figure S4. Gating strategy for CAFs phenotype assessment using flow cytometry. Figure S5. Characterization of CAFs phenotype. Figure S6. Impact of calcitriol on the phenotype of CAFs derived from tumors of patients with different clinical characteristics. Figure S7. The expression matrix of 61 genes from 19 selected CAFs cultures. Figure S8. Uncropped blot images corresponding to cropped blots presented in Figure 7 in the manuscript: Selected protein levels in calcitriol-treated CAFs derived from tumors of patients with different clinical characteristics. Figure S9. Uncropped gel images corresponding to cropped gels presented in Figure 8 in the manuscript: Gelatinase activity in calcitriol-treated CAFs derived from tumors of patients with different clinical characteristics. Figure S10. Representative photos of the migration of breast cancer cells incubated with conditioned media (CM) from calcitriol-treated CAFs. Figure S11. Impact of CAFs on the levels of selected proteins in breast cancer cells. Figure S12. Uncropped blot images corresponding to the cropped blots presented in Figure 10 in the manuscript: CAF impact on the levels of selected proteins in breast cancer cells: MCF-7. Figure S13. Uncropped blot images corresponding to the cropped blots presented in Figure 10 in the manuscript: CAF impact on the levels of selected proteins in breast cancer cells: MDA-MB-231
    corecore