91 research outputs found

    In vivo gene transfer to the brain cortex using a single injection of HSV-1 vector into the medial septum

    Get PDF
    This study shows that an ICP4-replication-deficient herpes simplex virus containing the Moloney murine leukaemia virus LTR fused with the coding sequence for the beta-galactosidase gene can be used as a very effective vector for delivering the beta-galactosidase reporter gene into the rat brain septum. F344 rats received bilateral stereotaxic injections into the nucleus of the diagonal band and into the medial septum. The X-gal stain was used to detect the activity of the expressed beta-galactosidase enzyme. The delivered reporter gene was expressed successfully not only in the neuronal cells of the injected areas but also in cells that project to the injection area such as cortex cells about 6 mm away from the injection sites. Expression was visible at 1, 3 and 9 weeks following injection. We conclude that this vector can effectively deliver genes into different regions of the mature mammalian brain and also to areas distant from the injection site

    Evaluation of the fibroblast growth factor system as a potential target for therapy in human prostate cancer

    Get PDF
    Overexpression of fibroblast growth factors (FGFs) has been implicated in prostate carcinogenesis. FGFs function via their high-affinity interactions with receptor tyrosine kinases, FGFR1–4. Expression of FGFR1 and FGFR2 in prostate cancer (CaP) was not found to be associated with clinical parameters. In this report, we further investigated for abnormal FGFR expression in prostate cancer and explore their significance as a potential target for therapy. The expression levels of FGFR3 and FGFR4 in CaP were examined and corroborated to clinical parameters. FGFR3 immunoreactivity in benign prostatic hyperplasia (BPH) and CaP (n=26 and 57, respectively) had similar intensity and pattern. Overall, FGFR4 expression was significantly upregulated in CaP when compared to BPH. A significant positive correlation between FGFR4 expression and Gleason score was noted: Gleason score 7–10 tumours compared to BPH (P<0.0001, Fisher's exact test), Gleason score 4–6 tumours compared to BPH (P<0.0004), and Gleason 7–10 compared to Gleason 4–6 tumours (P<0.005). FGFR4 overexpression was associated with an unfavourable outcome with decreased disease-specific survival (P<0.04, log rank test). FGF-induced signalling is targeted using soluble FGF receptor (sFGFR), potent inhibitor of FGFR function. We have previously shown that sFGFR expression via a replication-deficient adenoviral vector (AdlllcRl) suppresses in vitro FGF-induced signalling and function in human CaP DU145 cells. We tested the significance of inhibiting FGF function along with conventional therapeutic modalities in CaP, and confirmed synergistic effects on in vitro cell growth (proliferation and colony formation) by combining sFGFR expression and treatment with either Paclitaxel (Taxol®) or γ-irradiation. In summary, our data support the model of FGF system as valid target for therapy in CaP

    Nuclear expression of FLT1 and its ligand PGF in FUS-DDIT3 carrying myxoid liposarcomas suggests the existence of an intracrine signaling loop

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The FUS-DDIT3 fusion oncogene encodes an abnormal transcription factor that has a causative role in the development of myxoid/round-cell liposarcomas (MLS/RCLS). We have previously identified <it>FLT1 </it>(<it>VEGFR1</it>) as a candidate downstream target gene of FUS-DDIT3. The aim of this study was to investigate expression of FLT1 and its ligands in MLS cells.</p> <p>Methods</p> <p>HT1080 human fibrosarcoma cells were transiently transfected with <it>FUS-DDIT3</it>-GFP variant constructs and FLT1 expression was measured by quantitative real-time PCR. In addition, <it>FLT1</it>, <it>PGF, VEGFA and VEGFB </it>expression was measured in MLS/RCLS cell lines, MLS/RCLS tumors and in normal adiopocytes. We analyzed nine cases of MLS/RCLS and one cell line xenografted in mice for FLT1 protein expression using immunohistochemistry. MLS/RCLS cell lines were also analyzed for FLT1 by immunofluorescence and western blot. MLS/RCLS cell lines were additionally treated with FLT1 tyrosine kinase inhibitors and assayed for alterations in proliferation rate.</p> <p>Results</p> <p><it>FLT1 </it>expression was dramatically increased in transfected cells stably expressing FUS-DDIT3 and present at high levels in cell lines derived from MLS. The FLT1 protein showed a strong nuclear expression in cells of MLS tissue as well as in cultured MLS cells, which was confirmed by cellular fractionation. Tissue array analysis showed a nuclear expression of the FLT1 protein also in several other tumor and normal cell types including normal adipocytes. The FLT1 ligand coding gene <it>PGF </it>was highly expressed in cultured MLS cells compared to normal adipocytes while the other ligand genes <it>VEGFA </it>and <it>VEGFB </it>were expressed to lower levels. A more heterogeneous expression pattern of these genes were observed in tumor samples. No changes in proliferation rate of MLS cells were detected at concentrations for which the kinase inhibitors have shown specific inhibition of FLT1.</p> <p>Conclusions</p> <p>Our results imply that <it>FLT1 </it>is induced as an indirect downstream effect of FUS-DDIT3 expression in MLS. This could be a consequence of the ability of FUS-DDIT3 to hijack parts of normal adipose tissue development and reprogram primary cells to a liposarcoma-like phenotype. The findings of nuclear FLT1 protein and expression of corresponding ligands in MLS and normal tissues may have implications for tissue homeostasis and tumor development through auto- or intracrine signaling.</p

    Prolonged Exposure to a Mer Ligand in Leukemia: Gas6 Favors Expression of a Partial Mer Glycoform and Reveals a Novel Role for Mer in the Nucleus

    Get PDF
    Mer tyrosine kinase is ectopically expressed in acute lymphoblastic leukemia and associated with enhanced chemoresistance and disease progression. While such effects are generally ascribed to increased engagement of oncogenic pathways downstream of Mer stimulation by its ligand, Gas6, Mer has not been characterized beyond the scope of its signaling activity. The present study explores Mer behavior following prolonged exposure to Gas6, a context similar to the Gas6-enriched microenvironment of the bone marrow, where a steady supply of ligand facilitates continuous engagement of Mer and likely sustains the presence of leukemic cells. Long-term Gas6 exposure induced production of a partially N-glycosylated form of Mer from newly synthesized stores of protein. Preferential expression of the partial Mer glycoform was associated with diminished levels of Mer on the cell surface and altered Mer localization within the nuclear-soluble and chromatin-bound fractions. The presence of Mer in the nucleus is a novel finding for this receptor, and the glycoform-specific preferences observed in each nuclear compartment suggest that glycosylation may influence Mer function within particular subcellular locales. Previous studies have established Mer as an attractive cancer biologic target, and understanding the complexity of its activity has important implications for potential strategies of Mer inhibition in leukemia therapy. Our results identify several novel features of Mer that expand the breadth of its functions and impact the development of therapeutic modalities designed to target Mer

    Nipah Virus Infects Specific Subsets of Porcine Peripheral Blood Mononuclear Cells

    Get PDF
    Nipah virus (NiV), a zoonotic paramyxovirus, is highly contagious in swine, and can cause fatal infections in humans following transmission from the swine host. The main viral targets in both species are the respiratory and central nervous systems, with viremia implicated as a mode of dissemination of NiV throughout the host. The presented work focused on the role of peripheral blood mononuclear cells (PBMC) in the viremic spread of the virus in the swine host. B lymphocytes, CD4−CD8−, as well as CD4+CD8− T lymphocytes were not permissive to NiV, and expansion of the CD4+CD8− cells early post infection was consistent with functional humoral response to NiV infection observed in swine. In contrast, significant drop in the CD4+CD8− T cell frequency was observed in piglets which succumbed to the experimental infection, supporting the hypothesis that antibody development is the critical component of the protective immune response. Productive viral replication was detected in monocytes, CD6+CD8+ T lymphocytes and NK cells by recovery of infectious virus in the cell supernatants. Virus replication was supported by detection of the structural N and the non-structural C proteins or by detection of genomic RNA increase in the infected cells. Infection of T cells carrying CD6 marker, a strong ligand for the activated leukocyte cell adhesion molecule ALCAM (CD166) highly expressed on the microvascular endothelial cell of the blood-air and the blood-brain barrier may explain NiV preferential tropism for small blood vessels of the lung and brain

    Syndecan-1 and FGF-2, but Not FGF Receptor-1, Share a Common Transport Route and Co-Localize with Heparanase in the Nuclei of Mesenchymal Tumor Cells

    Get PDF
    Syndecan-1 forms complexes with growth factors and their cognate receptors in the cell membrane. We have previously reported a tubulin-mediated translocation of syndecan-1 to the nucleus. The transport route and functional significance of nuclear syndecan-1 is still incompletely understood. Here we investigate the sub-cellular distribution of syndecan-1, FGF-2, FGFR-1 and heparanase in malignant mesenchymal tumor cells, and explore the possibility of their coordinated translocation to the nucleus. To elucidate a structural requirement for this nuclear transport, we have transfected cells with a syndecan-1/EGFP construct or with a short truncated version containing only the tubulin binding RMKKK sequence. The sub-cellular distribution of the EGFP fusion proteins was monitored by fluorescence microscopy. Our data indicate that syndecan-1, FGF-2 and heparanase co-localize in the nucleus, whereas FGFR-1 is enriched mainly in the perinuclear area. Overexpression of syndecan-1 results in increased nuclear accumulation of FGF-2, demonstrating the functional importance of syndecan-1 for this nuclear transport. Interestingly, exogenously added FGF-2 does not follow the route taken by endogenous FGF-2. Furthermore, we prove that the RMKKK sequence of syndecan-1 is necessary and sufficient for nuclear translocation, acting as a nuclear localization signal, and the Arginine residue is vital for this localization. We conclude that syndecan-1 and FGF-2, but not FGFR-1 share a common transport route and co-localize with heparanase in the nucleus, and this transport is mediated by the RMKKK motif in syndecan-1. Our study opens a new perspective in the proteoglycan field and provides more evidence of nuclear interactions of syndecan-1

    Retrograde trafficking of β-dystroglycan from the plasma membrane to the nucleus

    Get PDF
    β-Dystroglycan (β-DG) is a transmembrane protein with critical roles in cell adhesion, cytoskeleton remodeling and nuclear architecture. This functional diversity is attributed to the ability of β-DG to target to, and conform specific protein assemblies at the plasma membrane (PM) and nuclear envelope (NE). Although a classical NLS and importin α/β mediated nuclear import pathway has already been described for β-DG, the intracellular trafficking route by which β-DG reaches the nucleus is unknown. In this study, we demonstrated that β-DG undergoes retrograde intracellular trafficking from the PM to the nucleus via the endosome-ER network. Furthermore, we provided evidence indicating that the translocon complex Sec61 mediates the release of β-DG from the ER membrane, making it accessible for importins and nuclear import. Finally, we show that phosphorylation of β-DG at Tyr890 is a key stimulus for β-DG nuclear translocation. Collectively our data describe the retrograde intracellular trafficking route that β-DG follows from PM to the nucleus. This dual role for a cell adhesion receptor permits the cell to functionally connect the PM with the nucleus and represents to our knowledge the first example of a cell adhesion receptor exhibiting retrograde nuclear trafficking and having dual roles in PM and NE

    Analysis of the Fibroblast Growth Factor System Reveals Alterations in a Mouse Model of Spinal Muscular Atrophy

    Get PDF
    The monogenetic disease Spinal Muscular Atrophy (SMA) is characterized by a progressive loss of motoneurons leading to muscle weakness and atrophy due to severe reduction of the Survival of Motoneuron (SMN) protein. Several models of SMA show deficits in neurite outgrowth and maintenance of neuromuscular junction (NMJ) structure. Survival of motoneurons, axonal outgrowth and formation of NMJ is controlled by neurotrophic factors such as the Fibroblast Growth Factor (FGF) system. Besides their classical role as extracellular ligands, some FGFs exert also intracellular functions controlling neuronal differentiation. We have previously shown that intracellular FGF-2 binds to SMN and regulates the number of a subtype of nuclear bodies which are reduced in SMA patients. In the light of these findings, we systematically analyzed the FGF-system comprising five canonical receptors and 22 ligands in a severe mouse model of SMA. In this study, we demonstrate widespread alterations of the FGF-system in both muscle and spinal cord. Importantly, FGF-receptor 1 is upregulated in spinal cord at a pre-symptomatic stage as well as in a mouse motoneuron-like cell-line NSC34 based model of SMA. Consistent with that, phosphorylations of FGFR-downstream targets Akt and ERK are increased. Moreover, ERK hyper-phosphorylation is functionally linked to FGFR-1 as revealed by receptor inhibition experiments. Our study shows that the FGF system is dysregulated at an early stage in SMA and may contribute to the SMA pathogenesis

    FABP7 expression in normal and stab-injured brain cortex and its role in astrocyte proliferation

    Get PDF
    Reactive gliosis, in which astrocytes as well as other types of glial cells undergo massive proliferation, is a common hallmark of all brain pathologies. Brain-type fatty acid-binding protein (FABP7) is abundantly expressed in neural stem cells and astrocytes of developing brain, suggesting its role in differentiation and/or proliferation of glial cells through regulation of lipid metabolism and/or signaling. However, the role of FABP7 in proliferation of glial cells during reactive gliosis is unknown. In this study, we examined the expression of FABP7 in mouse cortical stab injury model and also the phenotype of FABP7-KO mice in glial cell proliferation. Western blotting showed that FABP7 expression was increased significantly in the injured cortex compared with the contralateral side. By immunohistochemistry, FABP7 was localized to GFAP+ astrocytes (21% of FABP7+ cells) and NG2+ oligodendrocyte progenitor cells (62%) in the normal cortex. In the injured cortex there was no change in the population of FABP7+/NG2+ cells, while there was a significant increase in FABP7+/GFAP+ cells. In the stab-injured cortex of FABP7-KO mice there was decrease in the total number of reactive astrocytes and in the number of BrdU+ astrocytes compared with wild-type mice. Primary cultured astrocytes from FABP7-KO mice also showed a significant decrease in proliferation and omega-3 fatty acid incorporation compared with wild-type astrocytes. Overall, these data suggest that FABP7 is involved in the proliferation of astrocytes by controlling cellular fatty acid homeostasis
    corecore