48 research outputs found

    Edge-disjoint spanners in Cartesian products of graphs

    Get PDF
    AbstractA spanning subgraph S=(V,E′) of a connected graph G=(V,E) is an (x+c)-spanner if for any pair of vertices u and v, dS(u,v)⩽dG(u,v)+c where dG and dS are the usual distance functions in G and S, respectively. The parameter c is called the delay of the spanner. We study edge-disjoint spanners in graphs, focusing on graphs formed as Cartesian products. Our approach is to construct sets of edge-disjoint spanners in a product based on sets of edge-disjoint spanners and colorings of the component graphs. We present several results on general products and then narrow our focus to hypercubes

    Route discovery with constant memory in oriented planar geometric networks

    Get PDF
    We address the problem of discovering routes in strongly connected planar geometric networks with directed links. Motivated by the necessity for establishing communication in wireless ad hoc networks in which the only information available to a vertex is its immediate neighborhood, we are considering routing algorithms that use the neighborhood information of a vertex for routing with constant memory only. We solve the problem for three types of directed planar geometric networks: Eulerian (in which every vertex has the same number of incoming and outgoing edges), Outerplanar (in which a single face contains all vertices of the network), and Strongly Face Connected, a new class of geometric networks that we define in the article, consisting of several faces, each face being a strongly connected outerplanar graph

    On minimizing the maximum sensor movement for barrier coverage of a line segment

    Get PDF
    We consider n mobile sensors located on a line containing a barrier represented by a finite line segment. Sensors form a wireless sensor network and are able to move within the line. An intruder traversing the barrier can be detected only when it is within the sensing range of at least one sensor. The sensor network establishes barrier coverage of the segment if no intruder can penetrate the barrier from any direction in the plane without being detected. Starting from arbitrary initial positions of sensors on the line we are interested in finding final positions of sensors that establish barrier coverage and minimize the maximum distance traversed by any sensor. We distinguish several variants of the problem, based on (a) whether or not the sensors have identical ranges, (b) whether or not complete coverage is possible and (c) in the case when complete coverage is impossible, whether or not the maximal coverage is required to be contiguous. For the case of n sensors with identical range, when complete coverage is impossible, we give linear time optimal algorithms that achieve maximal coverage, both for the contiguous and non-contiguous case. When complete coverage is possible, we give an O(n 2) algorithm for an optimal solution, a linear time approximation scheme with approximation factor 2, and a (1∈+∈ε) PTAS. When the sensors have unequal ranges we show that a variation of the problem is NP-complete and identify some instances which can be solved with our algorithms for sensors with unequal ranges

    Weak coverage of a rectangular barrier

    Get PDF
    Assume n wireless mobile sensors are initially dispersed in an ad hoc manner in a rectangular region. They are required to move to final locations so that they can detect any intruder crossing the region in a direction parallel to the sides of the rectangle, and thus provide weak bar-rier coverage of the region. We study three optimization problems related to the movement of sensors to achieve weak barrier coverage: minimizing the number of sensors moved (MinNum), minimizing the average distance moved by the sensors (MinSum), and minimizing the maximum distance moved by the sensors (

    Sweeping Graphs and Digraphs

    Get PDF
    Searching a network for an intruder is an interesting and difficult problem. Sweeping is one such search model, in which we "sweep" for intruders along edges. The minimum number of sweepers needed to clear a graph G is known as the sweep number sw(G). The sweep number can be restricted by insisting the sweep be monotonic (once an edge is cleared, it must stay cleared) and connected (new clear edges must be incident with already cleared edges). We will examine several lower bounds for sweep number, among them minimum degree, clique number, chromatic number, and girth. We will make use of several of these bounds to calculate sweep numbers for several infinite families of graphs. In particular, these families will answer some open problems regarding the relationships between the monotonic sweep number, connected sweep number, and monotonic connected sweep number. While sweeping originated in simple graphs, the idea may be easily extended to directed graphs, which allow for four different sweep models. We will examine some interesting non-intuitive sweep numbers and look at relations between these models. We also look at bounds on these sweep numbers on digraphs and tournaments

    Task swapping networks in distributed systems

    Full text link
    In this paper we propose task swapping networks for task reassignments by using task swappings in distributed systems. Some classes of task reassignments are achieved by using iterative local task swappings between software agents in distributed systems. We use group-theoretic methods to find a minimum-length sequence of adjacent task swappings needed from a source task assignment to a target task assignment in a task swapping network of several well-known topologies.Comment: This is a preprint of a paper whose final and definite form is published in: Int. J. Comput. Math. 90 (2013), 2221-2243 (DOI: 10.1080/00207160.2013.772985

    Multifractal tubes

    Full text link
    Tube formulas refer to the study of volumes of rr neighbourhoods of sets. For sets satisfying some (possible very weak) convexity conditions, this has a long history. However, within the past 20 years Lapidus has initiated and pioneered a systematic study of tube formulas for fractal sets. Following this, it is natural to ask to what extend it is possible to develop a theory of multifractal tube formulas for multifractal measures. In this paper we propose and develop a framework for such a theory. Firstly, we define multifractal tube formulas and, more generally, multifractal tube measures for general multifractal measures. Secondly, we introduce and develop two approaches for analysing these concepts for self-similar multifractal measures, namely: (1) Multifractal tubes of self-similar measures and renewal theory. Using techniques from renewal theory we give a complete description of the asymptotic behaviour of the multifractal tube formulas and tube measures of self-similar measures satisfying the Open Set Condition. (2) Multifractal tubes of self-similar measures and zeta-functions. Unfortunately, renewal theory techniques do not yield "explicit" expressions for the functions describing the asymptotic behaviour of the multifractal tube formulas and tube measures of self-similar measures. This is clearly undesirable. For this reason, we introduce and develop a second framework for studying multifractal tube formulas of self-similar measures. This approach is based on multifractal zeta-functions and allow us obtain "explicit" expressions for the multifractal tube formulas of self-similar measures, namely, using the Mellin transform and the residue theorem, we are able to express the multifractal tube formulas as sums involving the residues of the zeta-function.Comment: 122 page
    corecore