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Abstract 

Searching a network for an intruder is an interesting and difficult problem. Sweeping is 

one such search model, in which we "sweep" for intruders along edges. The minimum 

number of sweepers needed to clear a graph G is known as the sweep number sw(G). 
The sweep number can be restricted by insisting the sweep be monotonic (once an 

edge is cleared, it must stay cleared) and connected (new clear edges must be incident 

with already cleared edges). 

We will examine several lower bounds for sweep number, among them minimum 

degree, clique number, chromatic number, and girth. We will make use of several 

of these bounds to calculate sweep numbers for several infinite families of graphs. 

In particular, these families will answer some open problems regarding the relation- 

ships between the monotonic sweep number, connected sweep number, and monotonic 

connected sweep number. 

While sweeping originated in simple graphs, the idea may be easily extended to 

directed graphs, which allow for four different sweep models. We will examine some 

interesting non-intuitive sweep numbers and look a t  relations between these models. 

We also look at  bounds on these sweep numbers on digraphs and tournaments. 
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Chapter 1 

Introduction 

Lark was about to head back to the corridor when he stopped, intrigued 

to see the Jophur's console was still active. Holo displays flickered, tuned 

to spectral bands his eyes found murky at  best. Still he approached one 

in curiosity - then growing excitement. 

It's a map! He recognized the battle cruiser's oblate shape, cut open to  

expose the ship's mazelike interior. It turned slowly. Varied shadings 

changed slowly while he watched. 

. . . He managed to locate the security section where he and Ling had been 

imprisoned when they were first brought aboard on Jijo. A deep, festering 

blue rippled outward from that area and spread gradually "northward" 

along the ship's main axis, filling one deck at  a time. 

A search pattern. They've been driving me into an ever smaller volume ... 

Heaven's Reach, David Brin 

Imagine you arrive at  one of the "big box" department stores that have sprung 

up around the country with a bag of live garden gnomes. No sooner do you enter the 

store then you trip, break you glasses, and drop your bag of gnomes. The gnomes 

scatter throughout the store. Fearing the wrath of the store manager, you begin to 

look for the gnomes. You are hampered by several problems. First, the shelves in the 
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big box store are very high; too high to pass over. Second, with your broken glasses, 

the only way you can catch a gnome is by running into it. Third, the gnomes are 

incredibly quick - while no gnome could walk past you in an aisle, picking the wrong 

way a t  a junction would allow them to slip around behind you. Finally (and most 

embarrassingly), you forgot to count the number of gnomes in the sack, and don't 

know how many you're looking for! 

You begin to  look around, walking around one of the large shelves. You complete 

a full circuit, and think that a t  least there are no gnomes here ... when you realize 

that a gnome could simply be walking directly in front of you, doing the same circuit! 

You could walk around the shelf forever! Clearly, you need help, and even then, you 

need to find a way to walk through the store in a manner to  guarantee that you walk 

around all the shelves (and other nooks and crannies) AND guarantee that no gnomes 

have "doubled back" on you. 

This model of searching was originated by Parsons in [18], though the problem 

was of interest to spelunkers earlier than that [6]. Parson's original problem dealt 

with finding a lost spelunker in a system of caves, but the problem has much wider 

application. We are interested in sweeping as a problem in network security, looking 

for methods to clean a network of a computer virus, or methods to capture a mobile 

intruder using software agents. In the literature, sweeping has been linked to pebbling 

(and hence to computer memory usage) [12], to assuring privacy when using bugged 

channels [lo], and to VLSI (very large-scale integrated) circuit design [9]. 

An alternate, but equally valid paradigm, to spelunking would be to consider a 

building filled with poison gas. The job of the sweepers is to remove all the poison 

gas. Clearly, if a sweeper comes to a junction, a t  which point the area behind him 

has been cleared of poison gas, but the area ahead of him has not, great care must 

be taken, else the cleared area will be recontaminated. Our goal becomes to remove 

all the poison gas. 

In this thesis, we will deal primarily with graphs. 

Definition 1.1 A graph G is composed of two sets, a finite set of elements V(G) 

called vertices, and a finite set E(G) of unordered pairs of elements of V(G) called 
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edges. A reflem%e graph is a graph in which loops are also allowed as edges, and a 

multigraph is a graph in which multiple edge may exist between pairs of vertices. 

Definition 1.2 The number of edges incident with a vertex v of a graph G is the 

degree of v, denoted deg (v). 

In this search model, collision between a searcher and an intruder may occur on an 

edge. We will call this type of search a sweep. In Parson's original general sweeping 

model, graphs were considered to be embedded in three-space and the motion of 

sweepers (and intruders) in the graph was described by continuous functions. A 
successful strategy would be a set of functions for the sweepers such that at some 

time t, the function value for some sweeper must be the same as that of the intruder. 

We will consider a similar, but discrete, model. The specifics of sweeping a re- 

flexive multigraph G are as follows. Initially, all edges of G are contaminated (or 

dirty). To sweep G it is necessary to formulate and carry out a sweep strategy. A 
strategy is a sequence of actions designed so that the final action leaves all edges of G 

uncontaminated (or cleared). Two actions are allowed after initially placing sweepers 

on vertices of G. 

1. Move a single sweeper along an edge uv starting at u and ending a t  v. 

2. Move a single sweeper from a single vertex u of G to any other vertex v of G. 

Any strategy that uses the above actions will be called a wormhole sweep strategy. 

A strategy that restricts itself to the first will be called a sweep strategy. Notice that 

in a disconnected graph, the number of sweepers needed for a sweep strategy would be 

much higher than the number needed for a wormhole sweep strategy. In the former, 

there needs to be sufficiently many sweepers in each component, while in the latter, 

sweepers could jump from component to component. This thesis will deal solely with 

connected graphs. 

An edge uv in G can be cleared in one of two ways. 

1. At least two sweepers are placed on vertex u of edge uv: and one of them 

traverses the edge from u to .L. while the others remain at u. 
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2. A sweeper is placed on vertex u, where all edges incident with u, other than uv, 

are already cleared. Then the sweeper moves from u to v. 

Knowing that our goal is a graph where all the edges are cleared, a basic question 

is: what is the fewest number of sweepers for which a sweep strategy exists? We 

call this the sweep number, denoted sw(G). We define the wormhole sweep number 

similarly and denote it wsw(G). In fact, these two numbers are equal for connected 

graphs [I]. It can be seen that for any graph G the sweep number exists by considering 

the following strategy. Place a sweeper on each vertex of G, and then use a single 

extra sweeper to clear all the edges. 

Further restrictions may be placed on all strategies. Let E( i )  be the set of cleared 

edges after action i has occurred. A sweep strategy for a graph G for which E( i )  E 
E ( i  + 1) for all i is said to be monotonic. We may then define the monotonic sweep 

number and the monotonic wormhole sweep number, denoted msw(G) and mwsw(G), 

respectively. Similarly, a sweep strategy such that E( i )  induces a connected subgraph 

for all i is said to be connected, and we may define the connected sweep number ksw(G) 

and the connected wormhole sweep number kwsw(G). Finally, a sweep strategy may 

be both connected and monotonic, giving us the monotonic connected sweep number 

mksw(G) and the monotonic connected wormhole sweep number mkwsw(G). 

LaPaugh 1131 and Bienstock and Seymour [5] proved that for any connected graph 

G, wsw(G) = mwsw(G). Barrikre et al. [4] extended this result, giving the following 

relations for these numbers. 

Lemma 1.3 For any connected graph G, 

This chain of inequalities suggest several questions. For instance, can equality be 

achieved? Do graphs exist for which the inequalities are strict? 

Definition 1.4 A path Pn is a graph on n vertices vl, 212, . . .: vn where vivi+l E E(P,) 

for 1 5 i 5 n - 1. A cycle C,, is a graph with V(C,,) = V(P,) and E(C,,) = 

E(Pn) U {vnvl). 
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Definition 1.5 A tree is a connected graph that contains no cycles. 

Parsons proved the following interesting result about the sweep number of trees 

P81. 

Theorem 1.6 Let TI, T2, and T3 be vertex-disjoint trees each having at least one 

edge, where vertex vj is a vertex of degree one i n  tree TjJ 1 2 j 2 3. Let T be the tree 

formed by identifying the vertices vl, vz, v3 as a single vertex v .  If sw(T,) = k ,  for 

i = 1,2,3,  then sw(T) = I; + 1. 

Thus, trees may have arbitrarily large sweep number. Barriere et al. [3, 41 also 

proved that there are at  most two sweep numbers for a given tree. That is, for a tree 

T, we have 

and the inequality may be strict. 

We will show that sw(Kn) = mksw(Kn) = n ,  where Kn is the complete graph on 

n vertices. This means that there is exactly one sweep number for complete graphs. 

In general, determining the sweep number of a graph G is NP-complete [14]. 

However, computing the sweep number of a tree is not NP-complete, but can be 

computed in linear time. As any successful sweep strategy gives an upper bound, our 

goal becomes first to find the "right" way to clear the graph, using as few sweepers as 

possible. Once this strategy is found, we must then prove that no fewer sweepers will 

suffice. Here is where the true difficulty lies: most easily attainable lower bounds are 

quite poor. We will prove several lower bound results using the graph parameters of 

minimum degree, girth, and chromatic number, but the parameter we will make the 

greatest use of is the clique number which occurs repeatedly in our constructions. 

Definition 1.7 The girth of a graph G, denoted g(G), is the order of the smallest 

cycle that is a subgraph of G. 
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Definition 1.8 A colouring of a multigraph G is any assignation of colours to the 

vertices of G. A proper colour-ing is a colouring in which no pair of adjacent vertices 

receives the same colour. The least number of colours needed to properly colour the 

vertices of G is called the chromatic number of G, denoted x(G). 

In the case of a reflexive multigraph, a colouring is proper if the corresponding 

colouring of the multigraph with all loops removed is proper. 

Definition 1.9 The clique number of the graph G, denoted w(G), is the number of 

vertices in a largest complete subgraph of G. 

Finding the "right" strategy is also very hard, but for most of the graphs consid- 

ered, such strategies will be given explicitly. Work on upper bounds is also vital, and 

recently an upper bound on the monotonic connected sweep number of planar cubic 

graphs was found by considering flooding [17]. 

Returning to Lemma 1.3, we still need to consider the question of strict inequality. 

An example in [4] shows that the first inequality may be strict. The graph below, 

which we call the "Y-square", is another example. Moreover, this is an example with 

fewer vertices and edges. We conjecture that it is the smallest graph that exhibits a 

strict inequality between sweep number and monotonic sweep number. 

In the process of clearing a graph, we will often refer to the condition of its vertices. 

We introduce the following definitions. 

Definition 1.10 A vertex in a graph G is said to be exposed if it has edges incident 

with it that are contaminated as well as edges incident with it that are cleared. 

Following a sweep strategy S on G, we define exs(G, i) to be the number of exposed 

vertices after the i-th step. We also define the maximum number of exposed vertices 

to be mexs(G) = m v  exs(G7 i). 
1 

Definition 1.11 A vertex v is said to be cleared if all the edges incident with it are 

currently uncontaminated. 
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Figure 1.1: The Y-square. 

Definition 1.12 A graph H is a minor of a graph G if H can be obtained from G 
through a sequence of edge contractions and deletions. 

Theorem 1.13 The Y-square has sweep number 3 and monotonic sweep number 4. 

PROOF. We first show that the Y-square can be cleared by three sweepers. Place 

a sweeper on each of vertices a ,  b, and e. Move the sweepers on vertices a and b 

to  c, clearing ac and bc, then clear to d. Move the sweeper on e to g, clearing eg. 

Leaving one sweeper on d, move the other to h (clearing dh). Then move this sweeper 

to g. With this move, the edge dh becomes recontaminated (so this sweep is not 

monotonic). Use this sweeper to clear f ,  the move the sweeper on g to h. Keeping 

two sweepers stationed on h and d, use the remaining sweeper to clear dh. Move the 

sweepers on h and d to i and m,  respectively. Use the third sweeper to clear im. 

Move the sweepers on i and m to j and n, respectively. Finally, use the third sweeper 

to clear the remaining pendant edges. 

Note that  by deleting the "Y" starting a t  h, and then by contracting the 4-cycle 

to a single point, we form a tree. Since 2 sweepers are necessary to sweep a "Y", by 

Theorem 1.6: this tree must have sweep number 3. In Theorem 2.15, we will show 
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that the sweep number of a graph is bounded below by the sweep number of any of 
its minors, and so the sweep number of the Y-square is exactly three. 

To see that the Y-square has monotonic sweep number a t  most 4, we demonstrate 

a sweep strategy. Place a sweeper on vertices a,  b, k, and 1. Move the sweepers on a 

and b to c, then to d. Then move one sweeper on d to m,  and the other to h. Then 

move the sweepers on k and 1 to j, then to i. Then move one sweeper on i to m,  

and the other to h. Move the two sweepers on m to n ,  and then move one of these 

sweepers to o, and the other to p. Move the two sweepers on h to g, and then move 

one of these sweepers to e, and the other to f ,  clearing the Y-square. 

Assume that a monotonic sweep strategy exists for three sweepers to  clear the 

Y-square. Consider the first moment that an edge in the 4-cycle is cleared. Without 

loss of generality, assume the edge dh is the first cleared by a sweeper moving from 

d to h. Since dm is not cleared, the vertex d is exposed, and must contain another 

sweeper. If the edge cd is not cleared, then even with a third sweeper a t  most two 

more edges can be cleared. Thus, the edge cd must be cleared. If neither ac nor bc 

is cleared, then c is exposed, and hence the sweeper on c cannot move. Nor can the 

sweeper on h move. The sweeper on d has only one move available - clearing dm 

- at which point no sweeper can move without recontaminating an edge. Thus, at 

least one of ac and bc must be cleared. If only one is cleared, then there must be 

a sweeper on c. With sweepers on h, c, and d, the sweeper on c may clear ca, but 

then the sweepers may only clear two more edges before being unable to  move with 

recontaminating an edge. Thus, when the sweeper moves from h to  d, the entire "Y" 

attached at d must be cleared. (This could have been done with 2 sweepers.) 

Now, consider the edge gh. If gh is cleared before dh is cleared, there must be a 

sweeper on h. This sweeper cannot have cleared the "Y" at h alone, so there must be 

another sweeper in the "Y", as neither of the other sweepers could have gotten to h 

without clearing the edge dh. But this requires four sweepers. So, the edge gh cannot 

be cleared. Similarly, the edge mn cannot be cleared. 

The only move for the sweeper remaining at d is to clear dm, at which point 

neither of the sweepers at h or m may move without recontaminating edges. Utilizing 

the third sweeper, at most two more edges may be cleared, before any move by any 
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sweeper recontaminates an edge. Thus, there is no monotonic sweep strategy with 

three sweepers, and the monotonic sweep number of the Y-square must be four. W 

The second inequality, msw 2 ksw, was also proved in [4]. Further, they gave an 

example showing that the inequality was strict. With this result, they also observed 

that generally, the monotonic sweep number or connected sweep number of a graph 

G may be less than the monotonic sweep number or connected sweep number of some 

minors of G. We prove these results by using large cliques as our building blocks, 

thereby allowing us to calculate the sweep numbers of the resulting graphs with ease. 

Whether the third inequality, ksw 2 mksw, can be strict was left as an open prob- 

lem in 141. We will show that there exists a graph G such that ksw(G) < mksw(G), 

and that, in fact, the difference between these two values can be arbitrarily large. 

The concept of sweeping may be extended to directed graphs. 

Definition 1.14 A directed graph (or digraph) D consists of a finite non-empty set 

V(D) of vertices and a finite set A(D)  of ordered pairs of distinct vertices, called arcs. 

We denote the arc from z to x by (z ,x)  and say that z dominates x. We call z the 

tail of arc (z, x) and x the head of arc (z, x). 

Definition 1.15 The out-degree df (W) = d&(W)(respectively, in-degree,d-(W) = 

d6(W))  of a subset W of V is the number of arcs from vertices of W to vertices of 

V - W (respectively from V - W to W). The minimum out-degree and in-degree over 

all vertices x of D are denoted by Sf = Sf (D) and 6- = 6- (D) respectively. 

We consider sweeping directed graphs D and the minimum number of sweepers 

required to clear all of the arcs of D in different situations. If both the sweepers 

and the intruders must move in the direction of the arcs, we call this a directed 

sweep and the minimum number of sweepers needed to clear D is the directed sweep 

number S W ~ , ~  (D). If both the sweepers and the intruders can move with or against 

the direction of an  arc, we call this an undirected sweep and the minimum number of 

sweepers needed to clear D is the undirected sweep number S W ~ , ~ ( D ) .  If the intruders 

must move in the direction of the arcs, but the sweepers need not, we call this a 

strong sweep and the minimum number of sweepers needed to clear D is the strong 
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sweep number S W O , ~  (D). Finally, if the sweepers must move in the direction of the 

arcs, but the intruders need not, we call this a weak sweep and the minimum number 

of sweepers need to clear D is the weak sweep number S W ~ , ~ ( D ) .  In all of the directed 

sweep models we consider, "jumping" is forbidden. 

Of the various directed sweep models, perhaps the "least" interesting is the undi- 

rected sweep. Any undirected sweep strategy in a digraph D also is a sweep strategy 

for the undirected graph underlying D (every arc is replaced by an edge). It is in- 

cluded as a model for completeness, but we will concentrate on the other directed 

sweep models. 

The methods by which arcs are cleared also need addressing in these models. In 

a strong sweep, an arc (u, v) in a digraph D can be cleared in one of three ways. 

1. At least two sweepers are placed on vertex u of arc (u, v), and one of them 

traverses the arc from u to v while the others remain a t  u. 

2. A sweeper is placed on vertex u, where all incoming arcs incident with u already 

are cleared. Then the sweeper moves from u to v. 

3. A sweeper is placed on vertex v, and traverses the arc (u, v) in reverse, from v 

to u. 

In a directed sweep, an arc (u, v) in a digraph D can be cleared in one of two ways. 

1. At least two sweepers are placed on vertex u of arc (u, v), and one of them 

traverses the arc from u to v while the others remain a t  u. 

2. A sweeper is placed on vertex u ,  where all incoming arcs incident with u already 

are cleared. Then the sweeper moves from u to v. 

Finally, in a weak sweep, an arc (u, v) in a digraph D can be cleared in one of two 

ways. 

1. At least two sweepers are placed on vertex u of arc (u: v),  and one of them 

traverses the arc from u to v while the others a t  u. 
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2. A sweeper is placed on vertex u, where all arcs incident with u already are 

cleared. Then the sweeper moves from u to v. 

It also should be mentioned that in a weak sweep, a cleared arc (u ,v)  may be 

recontaminated if v is either the tail or head of a contaminated arc and contains no 

sweeper. 

As in the undirected case, we introduce an idea of a vertes being clear 

Definition 1.16 In a strong sweep or a directed sweep, a vertex v of a digraph D is 

clear if all of the incoming arcs with v as head are clear. In an undirected or weak 

sweep, a vertex v of a digraph D is clear if all of the arcs incident with v are clear. 

Definition 1.17 An orientation of a graph G is a digraph D,  where V(D) = V(G) 

and exactly one of the arcs (u, v) and (v, u) is in A(D) for each edge uv E E(G). 

We often think of an orientation D of G coming from some assignation of direction 

to each edge in G. 

+ 
Definition 1.18 A directed path P, on n vertices has an n-element vertex set vl, va, 

+ 
. . ., v, and arcs (vi, u ~ + ~ )  for 1 2 i 2 n - 1. A directed cycle Cr1 on n vertices has an 

n-element vertex set vl! 212, . . ., u,, and arcs (vi, vi+l) for 1 2 i 2 n - 1, as well as the 

arc (vn,vl). 

Certainly, directed paths and directed cycles are orientations of undirected paths 

and cycles. An interesting and commonly studied class of digraphs is the orientations 

of the complete graphs. 

Definition 1.19 A tournament T on n vertices is an orientation of K,, that is, a 

directed graph D in which A(D) contains exactly one arc between every pair of distinct 

vertices. 

Definition 1.20 In the case of tournaments, we sometimes call the out-degree of 

a vertex the score of the vertex. The score sequence of a tournament is then the 

sequence of out-degrees of the vertices ordered such that df (v,) 2 df (v,-~) 2 . . . 2 
df(vl). 
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The directed graph analogue of a tree is an acyclic digraph. 

Definition 1.21 A digraph D is acyclic if it contains no directed cycles. If the 

vertices of an acyclic digraph D are labelled vl,  u2, . . .: v, such that an arc goes from 

vi to vj only if i < j, then this labelling is called an acyclic ordering of D. 

Definition 1.22 A transitive tournament TT,, is a tournament on n vertices that is 
* 

acyclic. Alternatively, TT,, may be considered the transitive closure of P,,. 

Definition 1.23 A minimum feedback vertex set F in a directed graph D is a smallest 

set of vertices whose removal leaves D - F acyclic. 

Finding such an F is an NP-hard problem [ll] 

Definition 1.24 A digraph D is connected if the underlying undirected graph is 

connected. 

Definition 1.25 A digraph D is strong if there exists a directed path from vertex x 

to  vertex y for all possible choices of vertices x and y. A strong component of D is 

a maximal induced subdigraph of D that is strong. A single vertex is taken to be a 

strong subdigraph. 

Definition 1.26 If a tournament is not strong, we say that it is reducible; else it is 

irreducible. 

Definition 1.27 The reversibility index in(T)  of a strong tournament T is the size 

of a minimum set of arcs whose reversal changes T into a reducible tournament. 



Chapter 2 

Some Lower Bounds 

2.1 Minimum Degree 

For a graph G, we will denote the minimum degree of G by 6(G). The main result of 

this section is Theorem 2.2, which will be used to calculate several sweep numbers. 

We first introduce a simpler version of this theorem. 

Theorem 2.1 If G is a connected graph, t h e n  sw(G) 2 6(G). 

PROOF. Consider the first time a vertex v is cleared. Every edge incident with v is 

cleared, but every vertex adjacent to v must be exposed. Thus, each vertex adjacent 

to v must contain a sweeper, and the result follows. 

Theorem 2.2 If G is a connected graph and b(G) 2 3 ,  t h e n  sw(G) 2 b(G) + 1. 

PROOF. Consider a graph G with minimum degree b(G), and a sweep strategy S 

that clears it. If the first vertex cleared by S is not of minimum degree, then it must 

have at  least b(G) + 1 vertices adjacent to it. When it is cleared, each of the these 

vertices must contain a sweeper and sw(G) 2 b(G) + 1. 

We now consider the last time that the graph goes from having no cleared vertices 

to a single cleared vertex u. By the preceding paragraph, we may assume that u is 
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a vertex of minimum degree. We will assume that the strategy S employs at most 

b = b(G) sweepers, and arrive a t  a contradiction. Let the neighbours of u be denoted 

vl, 712, . . ., vg. Assume, without loss of generality, that uvl is the final edge incident 

with u cleared, and that uv2 is the penultimate such edge. 

Consider the placement of sweepers the moment before uvl is cleared. Since each 

of uvi, 2 5 i 5 6, is cleared, there must be a sweeper on each end vertex of these 

edges. But this uses all b sweepers. Thus the only way that uvl can be cleared is 

if the sweeper at u traverses the edge uvl from u to vl. Thus, all the other edges 

incident with vl must be contaminated. Since b 2 3, the sweeper on vl cannot move. 

Now consider the placement of sweepers before the penultimate edge uv2 is cleared. 

Again, as each of the edges mi, 3 2 i 5 6, is cleared, there must be a sweeper on each 

end vertex of these edges. This accounts for b - 1 sweepers. Since the next move is 

to clear uv2, the single free sweeper must be on either u or v2. Sweeping from v2 to u 

would instantly recontaminate the edge uv2 which implies the edge must be cleared 

from u to v2 This leaves the sweeper at v2, and all the other edges incident with v2 

must be contaminated. Since b 2 3, the sweeper on v2 cannot move. 

Consider a sweeper on vi, 3 5 i 5 6. If the vertex vi is adjacent to vl and v2, then 

the edges vlv; and v2vi are contaminated, and the sweeper at vi cannot move. 

If the vertex vi is adjacent to exactly one of vl and v2, it must also be adjacent 

to some other vertex w not adjacent to u (as the degree of vi is at least 6). As there 

is no sweeper on w, the only way that viw can be cleared is if w is a cleared vertex. 

However, we know that u is the first cleared vertex, so that w is not cleared. Thus, 

the sweeper a t  vi cannot move. 

Finally, if the vertex vi is adjacent to neither vl nor v2, it must be adjacent to two 

vertices wl and w2 neither of which is adjacent to u. As before, these edges cannot 

be cleared, and thus the sweeper at vi cannot move. 

As there are still contaminated edges, and none of the 6 sweepers can move, we 

have obtained the required contradiction. 1 

Despite the fact that Theorem 2.2 is only a slight improvement on Theorem 2.1, 

it yields many useful results. 
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Corollary 2.3 For a connected graph G, let K(G) be the vertex connectivity and d ( G )  

be the edge connectivity of G. If K(G) 2 3, then sw(G) 1 d ( G )  + 1 2 K(G) + 1. 

PROOF. Since b(G) 2 d ( G )  2 K(G) [23], the result follows from Theorem 2.2. . 
Corollary 2.4 For n >= 4, sw(K,,) = n. 

PROOF. By Theorem 2.2, we know that sw(Kn) 2 n. We present the following sweep 

strategy for K,, using n sweepers. First, clear a vertex v of Kn. This requires n - 1 

sweepers, leaving one free. This free sweeper may then clear all the edges of Kn that 

are not incident with v. . 
Corollary 2.4 actually proves a much stronger result, namely, that mksw(Kn) 5 n; 

as the sweep strategy described in the proof is in fact both monotonic and connected. 

From Lemma 1.3 and Corollary 2.4, it follows that there is only one sweep number 

for the complete graph K,. 

Corollary 2.5 For all positive integers n 2 4, 

Definition 2.6 The wheel graph W, , n 2 3, is the graph formed by connecting all 

the vertices of an n-cycle to another vertex v not on the cycle. 

Figure 2.1: The wheel graphs W3: Mi4, and W5. 
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Corollary 2.7 For all n 2 3, 

sw(Wn) = wsw(Wn) = mwsw(Wn) = msw(W,) = kwsw(Wn) 

= ksw(W,) = mkwsw(W,) = mksw(W,) = 4. 

PROOF. For all n 2 3, 6(Wn) = 3. Thus, by Theorem 2.2, 4 5 sw(W4). It remains 

to show that 4 sweepers are sufficient for a monotonic connected sweep of Wn. Label 

the vertex of degree n with vo, and the remaining vertices vl, v2, . . ., v, such that 

vnvl and vivi+l are edges for 1 2 i 5 n - 1. 

Place sweepers yl and 7 2  at  vo and sweepers y3 and y4 at  vl. Move yl along edge 

vovl, clearing it. Move yl back to vo. Then move y4 to vertex v2, clearing v1v2. Move 

71 along edge vovz, clearing it. Move yl back to vo. Then move y4 to vertex v3, 

clearing 212213. Repeat until all edges of Wn are cleared. Thus, mksw(Wn) 2 4, as 

required. W 

2.2 Minimum Degree and Girth 

However, for some graphs, minimum degree by itself is insufficient to easily calculate 

the lower bound for the sweep number of a graph. For instance, consider the graph 

K3,3. By Theorem 2.2, four sweepers are necessary. However, with four sweepers it is 

impossible to clear more than two vertices! We introduce the idea of girth to expand 

our repertoire of lower bounds. 

To improve Theorem 2.2, we introduce the following theorem. Since the sweep 

number of a connected graph is equal to its monotonic wormhole sweep number, we 

may investigate monotonic wormhole sweep strategies instead. While the wormhole 

feature is normally not useful, being able to assume a sweep is monotonic is very 

useful. Moreover, Theorem 2.9 tells us something about how such a sweep strategy 

may be formulated. However, we must first introduce the following lemma. 

Lemma 2.8 If G is a connected reflexive multigraph, then for any sweep strategy S, 
mwsw(G) - 1 <= mexs(G) 5 mwsw(G) . 
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PROOF. The second inequality is straightforward; every exposed vertex must 

contain a sweeper, so there cannot be more exposed vertices than sweepers. Let 

mwsw(G) = k. Assume that for some S, mexs(G) = k - 2. Following S, we label the 

sweepers in the order that they move. The first sweeper to move will be labelled yl ,  

the second to  move will be labelled 7 2 ,  and so on. Finally, if yi is the last sweeper 

to move, and i < k, arbitrarily label the remaining sweepers yi+l, yi+a, . . ., yk. NOW 

consider the sweeper yk. We will first show that given a strategy clearing G with k 

sweepers, we can construct a strategy S' in which G is cleared with k sweepers and 

yk never clears an edge. Then, over all such strategies where yk never clears an edge, 

we will construct another sweep strategy where yk never clears an edge and is never 

the only sweeper on an exposed vertex. 

If yk does move, consider the first time (if ever) it clears an edge uv, moving from 

u to v. Let this occur at step i. We will construct a new strategy S'. Up until step i, 

S' follows the same strategy as S. At step i,  there are at most k - 2 exposed vertices. 

So there are at least two sweepers that can move without recontaminating edges. At 

worst, one of these is yk. Let another be yj, located at vertex w. At step i, move yj 

to u. At step i + 1, move yk to w. For the remainder of S', we follow the strategy S ,  

but whatever moves yk makes in S! yj makes in S', and vice versa. Thus, there are 

the same number of moves in S' as in S after the edge uv is cleared, but if yk ever 

clears an edge, it must do so closer to the end. Repeating this process, we eventually 

end up with a strategy in which yk never clears an edge. If yk never moves, then it 

certainly clears no edges. 

Over all strategies where yk never clears an edge, let S' be a strategy in which 

yk becomes the only sweeper on an exposed vertex the minimum number of times. 

Assume that this minimum number of times is non-zero. Let step i be the first step 

that yk is the only sweeper on an exposed vertex v. This can only occur by another 

sweeper yj  moving away from v at step i. If v was exposed before yj moved, then one 

of the other k - 2 sweepers is free to move because there are at most k - 3 exposed 

vertices distinct from v. Let y, be a sweeper located at vertex u who is free to move. 

We construct a new strategy S" in which yk does not become the only sweeper on 

an exposed vertex. Up until step i ,  follow S'. At step i,  move y, to  vertex v. Then 
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continue with S' until one of the following occurs: vertex v is cleared; sweeper yk 
moves from vertex v; sweeper y, is supposed to become the only sweeper on vertex u, 

which is exposed; or sweeper ya is supposed to move in S'. If the vertex v is cleared, 

then move sweeper ya to the vertex u. If yk moves from vertex v in S' but v is not 

cleared, then in S' another sweeper has moved to vertex v. This also occurs in S", a t  

which point y, can move from v back to vertex u. If ya is supposed to become the only 

vertex on u, an exposed vertex, before v is cleared of yk moves, then since there are 

at most k - 2 exposed vertices, there is a sweeper other than y, and yk that can move 

without recontaminating any edges. This sweeper moves to u and then y, returns to 

vertex u. If, instead, y, is supposed to move in S' before v is cleared, before yk moves, 

and before y, is supposed to become the only sweeper on an exposed vertex u, then 

since there are a t  most k - 2 exposed vertices, there must be a sweeper other that yk 

and ya that can move and not recontaminate an edge. This sweeper moves to v and 

then y, returns to the vertex u. Up until this point, yk cannot again become the only 

sweeper on an exposed vertex. This point must occur; since S' is a sweep strategy, 

v is eventually cleared. After this point, S" follows S', and has the same number of 

moves. 

Instead, consider if the vertex v was not exposed before step i. Then the sweeper 

yj must clear an edge vw at  step i by moving from v along the edge to w. We consider 

several cases. If both v and w become exposed, the number of exposed vertices before 

step i must be at most k - 4. Thus, there must be a sweeper other than yk and yj 

that can move without recontaminating edges at step i.  This sweeper moves to vertex 

v, and behaves in the same fashion as ya in the previous case. If w is already exposed 

before step i, then if it does not become cleared a t  step i ,  then the number of exposed 

vertices before step i must be a t  most k - 3 exposed vertices. Thus, there must be a 

sweeper other than yk and yj that can move without recontaminating edges at step i.  

This sweeper moves to vertex v, and behaves in the same fashion as ya in the previous 

case. Finally, if w is already exposed, but moving yj from v to w clears w, let yb be 

the sweeper on w. In S", at step i ,  move yb from w along vw to v, clearing vw. Then 

move yj to vertex w. From this point on, treat yb as y, in the previous case. As 

before, we eventually reach a point where the position of vertices and the subsequent 

moves in S" are the same a s  in Sf. 
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Thus: in S" the sweeper yk still never clears an edge, and becomes the only sweeper 

on an exposed vertex fewer times than in S', contradicting the choice of S'. Thus, 

there must exist a strategy S' in which yl; never clears an edge and is never the only 

sweeper on an exposed vertex. Then, in fact, by removing all of the moves of yl; from 

S', we obtain a strategy that clears G using only k - 1 sweepers. We similarly obtain 

a contradiction if mexs(G) < k - 2. Thus, mexs(G) 2 mwsw(G) - 1. 

Theorem 2.9 If G is a connected reflexive graph with no  vertices of degree 2 ,  then 

there exists a monotonic wormhole sweep S with mwsw(G) sweepers such that 

mexs (G) = mwsw (G) - 1. 

PROOF. Let G be a connected reflexive graph G with no vertices of degree 2. 

Assume that for every monotonic wormhole sweep strategy S on G, mexs(G) = 

mwsw(G) = k. Since S is a sweep strategy, there is a moment when the number of 

exposed vertices becomes mexs(G) for the last time. Let S' be a monotonic wormhole 

sweep strategy which has the minimum number of instances where the number of 

exposed vertices goes from being less than k to being k and has the minimum number 

of edge clearings after the last time the number of exposed vertices becomes k .  The 

only action which can increase the number of exposed vertices is clearing an edge, 

which can expose a t  most two additional vertices. Let xy be the last edge cleared 

before the number of exposed vertices becomes mexs(G) for the last time. We consider 

four cases as to how xy can be cleared. 

Case 1: The edge xy is a loop, with x = y. Since clearing xy can expose a t  most 

one additional vertex, the number of exposed vertices must be k - 1. If x was already 

exposed, clearing xy would not increase the number of exposed vertices. Thus, x must 

not have been an exposed vertex. But since there must be a sweeper on each of the 

k - 1 exposed vertices, this leaves only one sweeper to clear the loop xy. But a single 

sweeper cannot clear a loop, a contradiction. Thus, xy cannot be a loop. 

Case 2: The number of exposed vertices just before xy is cleared is k - 2, and a t  

this time neither x nor y is exposed. Label the k- 2 exposed vertices as vl: 712; . . . vl;-2, 

and assume that sweeper yi rests on vertex vi, 1 2 i 5 k - 2. The edge xy must be 

such that neither x nor y is some vi. Assume that after xy is cleared, sweeper 7l;-1 is 
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on x and yk is on y. 

If there are any pendant edges or loops attached to some vi that are not cleared, 

we can use sweeper yk to clear these edges first. If this reduces the number of exposed 

vertices, then at  some later action k vertices must be exposed because the number of 

exposed vertices increasing to k occurs a minimum number of times in S'. This later 

point must have more cleared edges, contradicting the minimality of S'. Thus, clearing 

such an edge cannot reduce the number of exposed vertices. But then, clearing xy 

next would produce a sweep strategy with fewer edges to be cleared after the number 

of exposed vertices becomes k for the last time, again contradicting the minimality 

of S'. Similarly, if there are any contaminated edges between vi and vj, yk may clear 

these edges first, and then xy, again contradicting the minimality of S'. So we may 

assume that all edges between the vi have already been cleared, as have all pendant 

edges and loops incident with them. 

If some vertex vi is incident with only one contaminated edge, then yi may clear 

that edge first, and then yk may clear xy, again contradicting the minimality of S'. 
Thus, each vi must have at least two contaminated edges incident with it, and the yi, 

1 5 i 5 k - 2, must remain where they are as blockers. 

Neither x nor y are exposed before xy is cleared so that all edges incident with x 

and y are contaminated. After xy is cleared, both x and y are exposed. Thus, each 

of them is incident with a contaminated edge. Since G has no vertices of degree 2, 

both x and y must have at  least two contaminated edges incident with them, and 

thus neither yk-l nor yk may move, contradicting that S' is a sweep strategy. 

Case 3a: The number of exposed vertices just before xy is cleared is k - 1 and 

one of the vertices of xy already is an exposed vertex. Label the exposed vertices 

vl, v2, . . ., ~ k - ~ ,  and assume that they have sweepers on them, with sweeper yi on 

vertex vi, 1 =< i 5 k - 1. Without loss of generality, assume that x = ~ k - ~ .  Since 

the vertex vkP1 is still exposed, we may assume that yk-l stays on vkP1, that the 

remaining sweeper yk clears vkP1y by traversing the edge from vkPl to y, and that 

there is another contaminated edge vk-12 incident with ~ k - ~ .  

If there are any pendant edges or loops attached to some vi that are not cleared, we 

use the remaining sweeper yk to clear these edges first, and then vkPly, contradicting 
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the minimality of Sf. In particular, vk-12 is not pendant so that z must have degree at 
least 3. Similarly, if there are any contaminated edges between vi and vj, yk may clear 

these edges first, then vk-ly, again contradicting the minimality of Sf. So we may 

assume that all edges between the vi already have been cleared, as have all pendant 

edges and loops incident with them. 

If some vertex vi is incident with only one contaminated edge, then yi may clear 

that edge first, then yk may clear ~ k - ~ y ,  again contradicting the minimality of Sf. 

Thus, each vi must have at least two contaminated edges incident with it, and all the 

y;, 1 2 i 2 k - 2, must remain where they are as blockers. Note that deg(y) > 1, 

as otherwise sweeping vk+ly does not expose a new vertex. Since deg(y) 2 3, we 

know that once yk clears vk-1y: yk must remain on y. After vk-ly is cleared, if vk-l 

has two or more contaminated edges incident with it, then yk-1 must remain at ~ k - ~ .  

Then no sweepers may move, contradicting that Sf is a sweep strategy. Thus, the 

only contaminated edge remaining incident with vk-~ must be Thus, the next 

action in Sf must be that yk-l clears vkPlr. Since deg(z) 2 3, r must have a t  least two 

contaminated edges incident with it, and thus yk-1 also cannot move, contradicting 

that Sf is a sweep strategy. 

Case 3b: The number of exposed vertices is k - 1, and neither of the vertices of 

x y  is already exposed. Since the number of exposed vertices increases by 1 after x y  

is cleared, exactly one of x and y must have degree 1. (If both were degree 1, the 

graph would be disconnected.) Without loss of generality, assume that deg(x) = 1. 

Then deg(y) 2 3. Assume that the k - 1 exposed vertices are labelled vi and that the 

sweeper yi is on vi, 1 2 i 5 k - 1. Then the sweeper yk must clear xy. 

As in the previous case, all edges between vi must be cleared, as must all pendant 

edges and loops incident with them. Also, each vi must have a t  least two contaminated 

edges incident with it. Thus, none of the yi, 1 2 i <= k - 1, may move. Similarly, since 

deg(y) 2 3, y must have at least two contaminated edges incident with it, meaning 

that yk cannot move. This contradicts that Sf is a sweep strategy. . 
This theorem tells us that there exist sweep strategies for some graphs that "save" 

sweepers, in the sense we may keep a sweeper in reserve, to never be stationed at 
an exposed vertex, but instead to clear edges between stationed sweepers. If we 
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consider the analogy of a graph filled with gas, we may always keep a sweeper from 

being exposed, or by rotating sweepers reduce the amount of "exposure7' to a toxic 

substance. 

The use of graph instead of multigraph in Theorem 2.9 is intentional. While it 

is possible that the result may be extended to some multigraphs, this proof does not 

suffice. 

We first introduce a lemma from [21] to be used in the proof of Theorem 2.11. 

Lemma 2.10 If G is a graph and b(G) 2 3, then the number of cycles with pairwise 

distinct vertex sets is greater than 24. 

So, in particular, any graph with b = 3 has at least 4 cycles, where the vertex sets 

of these cycles are pairwise distinct. We can now extend Theorem 2.2 as follows. 

Theorem 2.11 If G is a connected graph and b(G) 2 3 and g(G) 2 3, 

PROOF. From Lemma 2.10, we know that the girth of G is finite, and that G has 

at least 4 cycles. Assume that g = g(G) 2 3. Since b = b(G) 2 3, it follows from 

Theorem 2.9 that there exists a monotonic wormhole sweep S with mwsw(G) = sw(G) 

sweepers such that mexs(G) = mwsw(G) - 1. Let Eo, El, . .., Em be the sequence of 

cleared edge sets corresponding to S. Let Gi be the graph induced by the cleared 

edges in Ei. 

Case  1. 6 2 g = 3. Consider the smallest i such that G has one cleared vertex 

u at step i .  Since deg(u) 2 b, G must have at least b exposed vertices adjacent 

to u. Since S exposes at most mwsw(G) - 1 vertices, b 2 wsw(G) - 1, and thus 

wsw(G) l b + l = b + g - 2 .  

Case 2. b 2 g = 4. Let i be the least number such that that G has at  least two 

cleared vertices u and u at step i .  If u and u are adjacent, they can have no common 

neighbours, and since deg(u) 2 6 and deg(v) 2 6, they must both be adjacent to at 

least b - 1 exposed vertices each. This is 26 - 2 sweepers, and 2b - 2 2 b + g - 2, as 
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required. If u and v are not adjacent, then they may share common neighbours. At 

worst, all their neighbours are common. Consider the graph Gi-l. Since u and v are 

not adjacent, only one of them can become cleared by the next move. Assume that v 

is already cleared a t  step i - 1, and u becomes clear a t  step i. Then v has at least b 

exposed vertices adjacent to  it, and certainly u itself is exposed at this point. Thus G 

must have at least b+ 1 different exposed vertices a t  step i- 1. Since S exposes at most 

mwsw(G) - 1 vertices, b + 1 5 mwsw(G) - 1, and thus mwsw(G) 2 b + 2 = 6 + g - 2.  

Case 3. 6 2 g 2 5. Let i be the least number such that G has a t  least two 

cleared vertices u and v at step i. If these two vertices are adjacent, then one must 

have 6 - 1 exposed vertices adjacent to it, and the other must have at least 6 - 2 

exposed vertices adjacent to it (it may be adjacent to  a third cleared vertex). Thus 

26 - 3 5 mwsw(G) - 1, and mwsw(G) 2 26 - 2 2 b + g - 2. If u and v are not 

adjacent, they have at most one neighbour in common, and hence again must have a t  

least 26 - 3 exposed vertices between them. Thus, as above, mwsw(G) 2 b + g - 2. 

Case 4. g > 6 = 3. Consider the smallest i such that Gi contains exactly one 

cycle C. Then each vertex of this cycle is either exposed or cleared. (Since only one 

edge was cleared, if Gi contained more than one cycle, then Gi-l must have contained 

a cycle.) Let u be a cleared vertex in C. Consider the graph H obtained when the 

edges of C are removed from Gi. Certainly, H is a forest, as Gi contained exactly 

one cycle. Then u is certainly in one of the non-trivial component trees that make 

up H. Since there are no vertices of degree 1 in G, any vertices of degree 1 in H 

must be exposed. Thus, there is an exposed vertex in the tree containing u. Further, 

this exposed vertex cannot be an exposed vertex in C ,  as this would mean that Gi 

contains two cycles. Thus, for every clear vertex in C, there is an exposed vertex 

in G. Certainly, for every exposed vertex in C there is a corresponding exposed 

vertex (itself), and the number of exposed vertices is at least g. Since the monotonic 

wormhole sweep strategy S exposes a t  most mwsw(G) - 1 vertices, g <= mwsw(G) - 1, 

and thus mwsw(G) 2 g + 1 2 b + g - 2. 

Case 5. .9 > b 2 4. Let il be the smallest i such that Gi, has two or more cycles. 

Accordingly, we know Gi has at most one cycle for any i < il. If C1 and C2 are 

two of the cycles formed and are vertex-disjoint, then as before, there is an exposed 
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vertex that corresponds to each vertex in each cycle. But at most one exposed vertex 

may correspond to a vertex in both cycles. Thus the number of exposed vertices is 

at  least 2g - 1. Thus, mwsw(G) 2 2g 2 b + g - 2. If Cl and C2 share exactly one 

common vertex, then there are at  least 29 - 2 exposed vertices at  step i2. Again, 

mwsw(G) 2 29 - 1 2 b + g - 2. If Cl and C2 share more than one vertex, then Gi, 

contains exactly three cycles. In t h s  case, we consider step i2! the first moment that 

the graph Gi contains four or more cycles. 

Let C be the subgraph of G formed by V(C) = V(C1) U V(C2) and E(C)  = 

E(C1)UE(C2), as shown in Figure 2.2(i). Let one of the new cycles formed be C3. If C3 

is vertex-disjoint from C, then Gi, contains two vertex-disjoint cycles, and as before, 

the number of exposed vertices is at  least 2g - 1. Thus, mwsw(G) 2 29 2 b + g - 2. 

If C3 and C share exactly one vertex, then there are at  least 29 - 2 exposed vertices 

at  step i2. Again, mwsw(G) 2 29 - 1 2 6 + g - 2. Otherwise, C and C3 share two or 

more vertices. We consider some subcases, as depicted in Figure 2.2. 

Figure 2.2: (i) The graph C;  (ii) Case 5(a); (iii) Case 5(b). 

Case 5(a). In this case, we consider four cycles: the cycle induced by the paths 

Pl and P2; the cycle induced by P2, P3, P5, and Ps; the cycle induced by P3 and 

P4; and finally the cycle induced by Pl,  P4, P5, and P6. These cycles all have length 
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at least g. We note that either or both of P5 and P6 may be paths of length zero. 

Summing the lengths of the cycles, we see that we count each path, and hence each 

edge, exactly twice. Thus, in this subgraph GI, E' = E(G1) 2 29. We next consider 

how many vertices are in V' = V(G1). If neither P5 nor P6 are paths of length zero: 

then summing vertex degrees over V' shows that 2(IV11 - 4) + 3 - 4 = 2/EI, or that 

I V' I = I E' 1 - 2 2 29 - 2. In this case, every vertex corresponds to an exposed vertex, 

and so mwsw(G) 2 29- 1 2 b+g-2. If exactly one of P5 or P6 is a path of length zero, 

then summing vertex degrees over V' shows that 2((V11 - 3) + 2 .3  + 4 = 21 Ell, or that 

IV'I = IE'I - 2 2 29 - 2. All but one of these vertices must correspond to an exposed 

vertex, so mwsw(G) 2 29- 2 2 b+g - 2. Finally, if both P5 and P6 are paths of length 

zero, then summing vertex degrees over V' shows that 2(I V'I - 2) + 2 . 4  = 2 1 E'I, or 

that I V'/ = I E'I - 2. In this case, however, all but two vertices must correspond to an 

exposed vertex, so the number of exposed vertices is at least I E'I -4 2 29-4 2 b+g-3, 

since g 2 b + 1. Thus, mwsw(G) 2 b + g - 2, as required. 

Case 5(b). In this case, we again consider four cycles: the cycle induced by the 

paths PI ,  P4, and P6; the cycle induced by the paths P2, P4, and P5; the cycle induced 

by the paths P3, P5, and P6; and the cycle induced by the paths Pl , P2, and P3. Each 

cycle has length at least g. Consider the sum of the lengths of the cycles. Each 

path is counted twice, as is each edge. Thus, in this subgraph G', the total number 

of edges I E'I = I E(G1) I 2 29. We sum the degrees of the vertices, and find that 

2(IV11 - 4) + 4  - 3 = 21E11, or that IV'I = IE'I - 2 2 29 - 2. Since every vertex in G' 

corresponds to an exposed vertex, we see that mwsw(G) >= 29 - 1 2 b + g - 2. . 
Definition 2.12 The complete bipartite graph Ka,b on a + b distinct vertices, where 

1 5 a 5 b, is the graph with vertex set V(K,,b) = {ul,u2,. . . ,u,) U { u 1 , ~ 2 , .  . . , ub)  

and edge set E(K,,b) = {uivjll $ i 5 b, 1 2 j 5 a). 

We now have sufficient tools to calculate the sweep number of the complete bipar- 

tite graph for all possible values of a and b. 

Corollary 2.13 Let 1 5 a 5 b. If 

1. a = 1 and 1 2 b 2 2, then sw(Ka,b) = 1; 
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2. a = 1 and b 2 3, then sw(K,,b) = 2; 

3. a = b = 2, then SW(K,,~) = 2; 

4. a = 2 and b 2 3, then sw(K,,b) = 3; 

5. 3 2 a 2 b, then sw(Kaqb) = a + 2 

PROOF. The first and third cases may be easily disposed of, as in the first case, 

Kl,b = Pb, and hence has sweep number 1, while in the second case K2,2 = C4 and 

hence has sweep number 2. 

Considering the second case, since sw(K,,b) = mw~w(K, ,~ ) ,  we consider monotonic 

wormhole sweep strategies. In particular, with a single sweeper it is possible to  clear 

only one pendant edge, a t  which point the sweeper cannot move along an edge or jump, 

as this would recontaminate the cleared edge. Thus, 2 5 sw(K,,b). TWO sweepers is 

certainly sufficient, as we can station one sweeper on the vertex of degree b, and the 

other sweeper can clear all the edges. 

In the fourth case, a similar argument suffices. Again, considering a monotonic 

wormhole sweep strategy, two sweepers is sufficient to clear two edges, but then the 

sweepers sit on vertices of degree b with only a single cleared edge incident with those 

vertices cleared. Thus, the sweepers cannot move without recontaminating the cleared 

edge, and so 3 2 SW(K,,~). Three sweepers is sufficient, as a sweeper can be placed 

on each vertex of degree b, and the third can clear all the edges. 

Finally, in the fifth case, since bipartite graphs contain no odd cycles, g(K,,b) = 4. 

By Theorem 2.11, sw(K,,b) 2 a+4-2 = a+2. In the same way as the previous cases, 

place a sweeper on each of the a vertices of degree b. Place a single sweeper on one 

of the vertices of degree a. The remaining sweeper then clears all the edges between 

these vertices. This is repeated for each vertex of degree a. Thus a + 2 sweepers are 

sufficient. W 

Similarly, the Petersen graph P (as shown in Figure 2.3) is a cubic graph with 

girth 5. Thus, sw(P) 2 6. In fact, 6 sweepers are sufficient. To see this, place a 

sweeper on each of the vertices a ,  b, c, d, and e. Use a sixth sweeper to clear the 

5-cycle induced by these vertices. Move each sweeper from the vertex it is on along 
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the single remaining contaminated edge incident with it. This leaves sweepers on f ,  g, 

h, i ,  and j ,  and the sixth sweeper can then clear the 5-cycle induced by these vertices, 

clearing the graph. 

In the same fashion, Theorem 2.11 implies that the Heawood graph and the McGee 

graph (both of which are pictured in Figure 2.3) which have girths 6 and 7, respec- 

tively, must have sweep numbers at  least 7 and 8. In fact, it can be shown that these 

numbers are also sufficient to clear these graphs. The sweep strategies are similar to 

those of the Petersen graph. First place a sweeper on each vertex of a cycle of min- 

imum length, then use the single remaining sweeper to clear the edges of the cycle. 

Then each vertex in the cycle has exactly one contaminated edge remaining. Clearing 

these, the single sweeper then proceeds to clear all possible edges between exposed 

vertices, the sweepers on these vertices advance, and so on. 

The complete graph K4, complete bipartite graph K3,3, the Petersen graph, the 

Heawood graph, and the McGee graph are all cubic graphs (all vertices have degree 

three). Further, each has a distinct girth g, and has the fewest vertices of all cubic 

graphs of their respective girths. Regular graphs with degree d and girth g on the 

smallest number of vertices possible are (d, g)-cages. 

So the (3, g)-cage has sweep number g + 1 for 3 2 g 2 7. However, this does not 

appear to be a general trend. While Theorem 2.11 implies that the sweep number 

of the Levi graph (the (3,8)-cage) is bounded below by 9, 9 sweepers do not seem 

sufficient to clear the graph, though this has not been proved. 

2.3 Clique Number 

The following lemma is a "junior" version of our eventual goal and comes from 1141. 

Lemma 2.14 At the time the first vertex becomes cleared while sweeping the complete 

graph K,,n 2 4, there must be at least n - 1 sweepers on the vertices of K,,. 

It  is easy to see that sw(K1) = 1, sw(K2) = 1: and sw(K3) = 2, and only slightly 

more difficult to see that sw(K4) = 4. The jump of the sweep numbers from 2 for K3 
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(ii) 

Figure 2.3: (i)The Petersen graph; (ii)the Heawood graph; (iii)the McGee graph; and 
(iv) the Levi graph. 

to 4 for K4 indicates that obvious methods, such as mathematical induction, will not 

easily prove a formula for sw(K,,). 

Theorem 2.15 If a graph H is a minor of a graph G; then wsw(H) 2 wsw(G) 

PROOF. Let Q : V(G) -, V(H) denote the function that maps the vertices of G 

to the corresponding vertices of H that result from vertex identifications that have 

taken place to form the minor H. Suppose that wsw(G) = k. Whenever a sweeper in 

G moves from a vertex u along an edge to a vertex u, the corresponding sweeper does 
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nothing in H when Q(u) = Q(v). If Q(u) # Q(v), then the corresponding sweeper 

does nothing when @(u) and @(v) are not adjacent in H, but traverses the edge from 

Q(u) to @(v) when they are adjacent in H. It is easy to see that k sweepers clear all 

of H if they clear G. The result follows. 

Of course, since sw(G) = wsw(G) = mwsw(G) for any connected graph G, The- 

orem 2.15 also holds for these other sweep numbers. From Corollary 2.5 and Theo- 

rem 2.15, we obtain the following result. 

Theorem 2.16 For any graph G, zf w(G) 2 4, then w(G) 2 sw(G). 

Since trees have clique number 2 and there exist trees with arbitrarily large sweep 

number, it might appear that the bound presented in Theorem 2.16 is not particularly 

useful. Nothing could be further from the truth as Theorem 2.16 provides a basis for 

constructing graphs with easily calculated sweep number. The general idea is to start 

with a graph G that can be cleared with p sweepers, and use G to construct a cousin 

G' of G that has K, as a subgraph, thereby forcing the sweep number of G' to be at 

least p. 

Many graphs for which this bound will be useful will be introduced in Chapter 3. 

2.4 Chromatic number 

If a graph G has a clique of size k, then at least k colours are required for a proper 

colouring. Thus, for any graph G, w(G) 2 x ( G )  Since we know that the clique 

number is a lower bound on the sweep number, it is reasonable to wonder whether 

Theorem 2.16 can be extended to the chromatic number. 

We begin by introducing the homeomorphic reduction of a graph. 

Definition 2.17 Let X be a reflexive multigraph. Let V' = {u E V(X) : deg(u) # 
2). A suspended path in X is a path of length at least 2 joining two vertices of V' 

such that all internal vertices of the path have degree 2. A suspended cycle in X is 

a cycle of length at least 2 such that exactly one vertex of the cycle is in V' and all 

other vertices have degree 2. 
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Definition 2.18 Let X be a reflexive multigraph. Let V' = {u E V(X) : deg(u) # 
2). The homeomorphic reduction of X is the reflexive multigraph X '  obtained from 

X with vertex set V' and the following edges. Any loop of X incident with a vertex of 

V' is a loop of X '  incident with the same vertex. Any edge of X joining two vertices 

of V' is an edge of X '  joining the same two vertices. Any suspended path of X joining 

two vertices of V' is replaced by a single edge in X' joining the same two vertices. 

Any suspended cycle of X containing a vertex u of V' is replaced by a loop in X '  

incident with u. In the special case that X has connected components that are cycles, 

these cycles are replaced by loops on a single vertex. 

Lemma 2.19 If X is a connected reflexive multigraph and Y is its homeomorphic 

reduction, then wsw(X) = wsw(Y). 

PROOF. Suppose wsw(Y) = k. Whenever a sweeper clears an edge e of Y, then 

we can let the corresponding sweeper clear the entire path of X corresponding to 

e. It is easy to see that k sweepers can clear all the edges of X in this way. Thus 

wsw(X) 2 wsw(Y). 

Suppose that wsw(X) = k. Whenever a sweeper traverses the edge e on vertices 

u and v by moving from u to v, we have the edge e' in Y on the vertices u' and v' 

that corresponds to the induced path containing uv (we may have either u' = u,v' = 

v, or both or neither). In Y, we then have the corresponding sweeper jump to u' (if 

necessary) and traverse the edge u'v'. It is clear that this strategy will clear the edges 

of Y. We conclude that wsw(Y) 2 wsw(X) from which the result follows. H 

To prove a bound on sweep number involving chromatic number, we return to  the 

idea of the maximum number of exposed vertices in a sweep. 

Theorem 2.20 If G is a connected reflexive multigraph with homeomorphic reduction 

G' and a monotonic wormhole sweep strategy S for G' such that mexs(G1) 2 3, then 

x(G) 2 mexs(G1) + 1. 

PROOF. Let mexs(G1) = k. We will show that G is (k  + 1)-colourable. We first 

show that G' is (k + 1)-colourable. Following the monotonic wormhole sweep strategy 
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S that exposes at most k vertices in GI, we can design a colouring such that it can 

colour G' using a t  most k + 1 colours. 

Initially, sweepers are placed on GI. When a vertex first becomes exposed (or in 

the case of vertices of degree 1, becomes cleared), the vertex is coloured. This colour 

cannot be changed or erased in the following sweeping process. We now consider how 

to colour a vertex v in the moment it becomes exposed (or cleared, in the case of 

vertices of degree 1). Before this moment, v cannot be adjacent to any cleared vertex. 

Thus, each coloured vertex that is adjacent to v must be an exposed vertex. Since 

the number of exposed vertices is less then or equal to  k, we can always assign v a 

colour that is different from the colours of the adjacent vertices of v. Thus, while S 

clears GI, we can assign a colour to each vertex of G' such that any pair of adjacent 

vertices has different colours. Thus, G' is (k + 1)-colourable. 

We now show that G is (k + 1)-colourable. For each vertex u in G', assign the 

colour of u in GI to  the corresponding vertex u in G. Any uncoloured vertex in G 

must be on a suspended path or a suspended cycle. If it is on a suspended cycle, one 

vertex in this cycle has already been coloured. At most two more colours are needed 

to colour the remaining vertices of this cycle, but since k 2 3, we have a sufficient 

number of colours to do so. Similarly, if the vertex is in a suspended path, the ends 

of the suspended path have already been coloured. Now at  most one more colour 

is needed to  colour the remaining vertices of this path, but again, we have sufficient 

colours to do so. Hence, G is (k + 1)-colourable. Therefore, x(G) 5 k + 1. 

Combining Theorem 2.20 with Lemma 2.8, we obtain the following corollary. 

Corollary 2.21 If G is a connected reflexive multigraph and sw(G) 2 3, then x(G) 5 
sw(G) + 1. 

Of course, we can do better. As demonstrated in Theorem 2.9, there are graphs 

where the maximum number of exposed vertices is one less than the sweep number. 

Corollary 2.22 If G is a connected reflexive graph with the property that no pair of 

suspended paths have the same end points and sw(G) 2 3, then x(G) 2 sw(G). 
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PROOF. Since G is not a multigraph, the homeomorphic reduction can only have 

multiple edges if two or more suspended paths have the same end points. Forbidding 

this, the homeomorphic reduction must be a graph with no vertices of degree 2, as 

required by Theorem 2.9. The result follows. 

We now demonstrate an infinite family of graphs for which Corollary 2.21 provides 

a better bound that any of the others demonstrated here. Let P be the graph with 

vertex set V(P)  = {vi):L'=+,', and edge set E(P) = {uiujll 2 i < j 2 p) U {vlu,+l). 

Thus, the graph P is a complete graph on p vertices with an extra edge incident with 

a vertex of degree 1. 

We will employ the Mycielski construction [15]. Given a graph G, we form the 

graph M (G), with vertex set V(M(G)) = V(G) U Vf(G) U {u), where Vf(G) contains 

the "twins" of V(G). That is, V1(G) = {xl/x E V(G)). The edge set E(V(M))  = 

E(G)~{z'ylxy E E ( G ) ) U { X ~ U ~ Z ~  E V1(G)). Similarly, we may define an infinite family 

of graphs by repeatedly applying a Mycielski construction. Define MO(G) = G, and 

Mt(G) = M(Mt-'(G)) for t 2 1. 

The Mycielski construction based on the 5-cycle C5 was introduced in [15] to create 

an infinite family of triangle-free graphs with arbitrarily large chromatic number. In 

fact, x(Mt(C5)) = t + 3  fort 2 0. More generally, for any graph G, w(Mt(G)) = w(G), 

G(Mt(G)) = G(G) + t: and x(Mt(G))  = x(G) + t for t 2 0. 

Taking the graph P as defined above, it is clear that G(P) = 1, w(P) = p, and 

x(P) = p. Applying the Mycielski construction, we see that G(Mt (P)) = I + t ,  
w(Mt(P)) = p, and x (Mt (P ) )  = p + t. As well, since P is a subgraph of Mt (P ) ,  

we know that g (Mt(P) )  = 3 so long as p 2 3. So for large p and t ,  Theorem 2.11 

tells us that G(Mt(P)) + 1 2 t + 2 2 sw(Mt(P)).  Similarly, Theorem 2.16 tells us 

that w(Mt(P)) = p 2 sw(Mt(P)).  But Corollary 2.21 tells us that x (Mt (P ) )  - 1 = 

p + t - 1 2 sw(Mt (P)), a clear improvement. 
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Figure 2.4: A graph P and M(P). 



Chapter 3 

Some applications of lower bounds 

3.1 Some results with cliques 

Lemma 3.1 If G is a connected graph, then sw(G) =< min (JV(G)I, IE(G) I). 

PROOF. We first clear G with n  = / V(G) I sweepers. Pick a vertex v E V(G) with 

k neighbours. On every vertex other than v and the neighbours of v, place a sweeper. 

Place the remaining k + 1 sweepers on v.  Move a sweeper from v to each neighbour u 

of v, clearing the edge uv. At this point, there is a sweeper on every vertex of G, and 

the single sweeper on v (which is cleared) may be used to clear all remaining edges. 

We next clear G with m = I E(G) I sweepers. Pick a vertex v E V(G). For each 

edge xy in G ,  place a sweeper on whichever of x and y is closer to v. (If both x and 

y are equidistant, pick one of them.) First clear v; then clear all vertices a t  distance 

1 from v; then those of distance 2, and so on. W 

Theorem 3.2 For n  2 4 ,  Kn+l is the unique connected supergraph of Kn with the 

fewest number of edges such that its sweep number is n + 1. 

PROOF. First, note that Kn+l is a supergraph of K, with sweep number n f l ,  and 

K,+l has n  additional edges. We will show that any other supergraph G containing 

h', with at  most n  additional edges satisfies sw(G) = n.  
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If G is a supergraph of K,, with only k < n additional edges, consider the connected 

components of the graph induced by E(G) - E(K,). Place one sweeper on each of the 

k edges of these components, and sweep these components as in Lemma 3.1, ending 

on vertices of K,. Clear the edges between these vertices, and arbitrarily pick one of 

these vertices and clear it. This leaves a sweeper on every other vertex of K,, and 

one free sweeper. This sweeper may clear all remaining edges. Thus, sw(G) = n. 

If G is a supergraph of K, with n additional edges, and some vertex v E K, is not 

incident with v, then as before, clear the additional edges as in Lemma 3.1, ending 

with sweepers on vertices of K,. There are a t  most n - 1 such exposed vertices (since 

v is adjacent to no additional edge) and so there is a free sweeper to clear all edges 

between these vertices. Then, arbitrarily clear one of these vertices. This leaves a 

sweeper on every other vertex of K,, and the remaining sweeper can clear the graph. 

Thus, sw(G) = n .  

Finally, we consider if G is a supergraph of K, with n additional edges, and every 

vertex of K, is incident with exactly one of these edges. If G contains more than one 

additional vertex than those in V(K,), let u be one such vertex. To sweep G, first 

clear u. Use a free sweeper to clear all the edges between neighbours of u, then clear 

one of the neighbours of u. This leaves a sweeper on every other vertex of K,, and 

one free sweeper. Use this sweeper to clear K,. Then the neighbours of every vertex 

in V(G) - V(K,) contains a sweeper, and they may clear these vertices, clearing G. 

Thus, sw(G) = n. . 
Theorem 3.3 If n 2 4,  then the graph of order n with the most edges and sweep 

number n - 1 is the complete graph K, with one edge removed. 

PROOF. Let Kn - {uv} denote the complete graph of order n with the edge uv 

deleted.We first use n - 2 sweepers to clear the vertex v and station these sweepers on 

the n - 2 neighbours of v. Then we use one free sweeper to clear all the contaminated 

edges between the n - 2 neighbours of v. Finally, we use n - 1 sweepers to clear all the 

remaining contaminated edges incident on u. Thus, K, - {uv} is (n  - 1)-sweepable. 

On the other hand, from Theorem 2.2, we have sw(K, - {uv}) 2 n - 1. Therefore, 

sw(Kn - {uv}) = n - 1. 1 
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In a similar fashion to the previous theorems, we may examine graphs that contain 

two vertex-disjoint cliques. 

Theorem 3.4 For a connected graph G on  2n  vertices, n 2 3, containing two vertex- 

disjoint copies of K, and exactly n edges between these two cliques, sw(G) = n + 1 

i f  and only i f  the edges between the cliques saturate the vertices of at least one of the 

cliques. 

PROOF. Label the two vertex-disjoint cliques K, and K:,. Assume the edges 

between K,  and Kk do not saturate the vertices of either, let v be a vertex of degree 

n - 1 in K, and v' be a vertex of degree n - 1 in KA. Since K,, is a subgraph of 

GI we know that sw(G) 2 n by Theorem 2.16. To demonstrate that n sweepers are 

sufficient: we provide a sweep strategy. 

Place n sweepers on vertex v. Clear v. At this point, there is a sweeper on every 

vertex of K,. Use the single free sweeper on v to clear K,. Then move the n sweepers 

across to KA, one sweeper to each edge. Since none of these edges connect to v', at least 

one vertex must contain two sweepers. Move sweepers to every vertex of Kk except 

v'. Use the single free sweeper to clear the edges between these vertices. Finally, the 

n - 1 other sweepers may clear the edges incident with v'. Thus sw(G) = n < n + 1. 

Assume, without loss of generality, that the edges between K, and KA saturate 

the vertices of K,. Then, contracting Kk to a single vertex, we see that G contains 

Kn+l as a minor, and hence sw(G) 2 n + 1. Finally, to show that n + 1 sweepers are 

sufficient, we provide a sweep strategy. Place one sweeper on each of the vertices of 

K,. Use the single remaining sweeper to clear the edges of K,. Move one sweeper 

across each of the n edges between the two cliques to Kk. Move sweepers (if necessary) 

so that there is at least one sweeper on each vertex of Kk. Finally, use a free sweeper 

to clear all the remaining edges. 

Discussing multiple copies of a graph and the edges between these copies motivates 

the consideration of graph products. The sweep number of the cartesian product of 

graphs has also been considered in [20], where the following result is proved. 

Definition 3.5 The cartesian product of two graphs G and H ,  denoted GUH, is a 
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graph with vertex set V(G) x V(H) .  Two vertices (ul ,  vl) and (u2, v2) are adjacent 

in GOH if u1 = u2 and vlv2 E E ( H )  or if ulu2 E E ( H )  and v = v2. 

Theorem 3.6 For two connected graphs G and H, 

sw(G0H) 5 min (IV(G)] . sw(H), IV(H)I . sw(G)) + 1 

Corollary 3.7 If G is a connected graph and n >= 4, then 

In fact, it is easy to see that  we can do better than this when G is also a complete 

graph. 

Corollary 3.8 For n 2 1 and m 2 2, mksw(K,OK,) 2 n ( m  - 1) + 1. 

PROOF. Label m vertex-disjoint n-cliques of KnOKm by Al, A2, . . .: A,, with 

V(Ai) = {vijll =< j 2 m). Place one sweeper on each of the v1j, and the remaining 

sweepers anywhere on Al. Use a free sweeper to clear all the edges in Al. There is a 

perfect matching between Al and A2. Move n sweepers to clear the perfect matching, 

v1,jv2,j ending in A2. Similarly, sweepers can traverse perfect matching from Al to 

Ail 3 2 i 2 m. This leaves n (m - 1) sweepers stationed on Ai, 2 5 i 2 m, and the 

remaining free sweeper can clear all the edges between these vertices. . 
In particular, mksw(KnOKTL) 2 n(n - 1) + 1. In the special case that exactly one 

of the complete graphs is K2 ,  we can say something even more precise. The graph 

K10K2 is exactly P2, and hence has monotonic connected sweep number 1. The graph 

K20K2 is C4, and hence has monotonic connected sweep number 2. For n greater 

than two, we have the following corollary. 

Corollary 3.9 If n 2 3, then sw(KnOK2) = n + 1. 

PROOF. By Theorem 3.6, we know that sw(KnO K2) 2 n + 1. But as well, 

G(KnOK2) = n, so by Theorem 2.2, sw(KnOK2) 2 n + 1. . 
Corollary 3.9 is also a direct result of Theorem 3.4. 
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3.2 Recontaminat ion Helps 

Figure 3.1: The graph W. 

We construct the graph W as shown in Figure 3.1. In this figure, a circle represents 

a complete graph on the indicated number of vertices, and double lines between two 

cliques A and B indicate a perfect matching either between A and B (if /A/ = IBI) 

or between A and a subgraph of B (if IAl < IB]). The latter is called a saturated 

matching. 

If there is a saturated matching from a graph A to a subgraph of B,  we use B[A] 

to denote the graph induced by those vertices of B adjacent to vertices of A. So B[A] 

also is a clique. 

We construct W such that Ag[Clg], A9[D19], A9[E3DO] and A9 [F300] are all vertex- 

disjoint, and similarly for A$. Also, V(A2[Cl]) n V(A2[B1]) = 0 and V(A4[Dl]) n 
V(A4[B300]) = 0, and similarly for A', and A:. Finally, there are 300 cliques between 

Al and A',, each of which contains 280 vertices. 

3.2.1 Computing the connected sweep number of W 

Lemma 3.10 In the process of a connected sweep of W ,  let v be the first cleared 

vertex that remains cleared for the remainder of the sweep. If v @ V(Ag) U V(A$), 
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then there are more than 281 sweepers. 

PROOF. Let S be a connected sweep strategy such that v $ V(Ag) U V(A;). 

Certainly, one of Ag and A; must first obtain a cleared vertex that remains clear for 

the remainder of the sweep. Without loss of generality, assume it is Ag. Immediately 

after the action that clears the first vertex of Ag there must be 280 sweepers on As. 

However, as A$ is not cleared, there must be an exposed vertex between A$ and 

v. Thus, none of the 281 sweepers used can move, necessitating at  least one more 

sweeper. H 

Theorem 3.11 We have ksw(W) = 281. 

PROOF. It follows from Corollary 2.5 that ksw(Ag) = ksw(A!J = 281 and from 

Theorem 2.16 that we need at  least 281 sweepers to clear W. To prove that this 

number is sufficient, we use the following sweep strategy. 

By Lemma 3.10, we must begin in one of Ag or A;. Without loss of generality, we 

begin by clearing a vertex in A;. First, place all 281 sweepers on a single vertex v of 

A$ \ (A; [Ci,] U A$ [Dig] U A; [ELoo] U A; [Fioo]). Move 280 of them to the 280 neighbours 

of v. This clears v, and the single sweeper remaining on v then clears all remaining 

edges in A;. 

The sweepers on AL[Cig] move to Cig along the perfect matching, and a single free 

sweeper clears all the edges of C;,. We repeat this process until finally we place 20 

sweepers on Ai[Ci], and use a single sweeper to clear all edges in Ai[Ci]. Similarly, 

we clear the Di, Ei, and F,! subgraphs, ending with sweepers on A',[D',], Ak[F{], and 

A;[Ei]. Again we use a single sweeper to clear edges in these subgraphs. We now 

have 201 free sweepers. 

We send these sweepers to a single vertex in A; that is adjacent to a vertex in 

Ak[Ei]. Then we clear this vertex leaving a single free sweeper who clears all remaining 

edges in A;. Then the sweepers in A;[A;] may lift to A',, and a single free sweeper 

may clear all edges in A;. 

At this point, we have 20 sweepers stationed on each of A',[Ci]: Ai[Di], and 

A&[Fi], as well as 80 stationed on A;. This leaves 141 free sweepers. We move all 
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these sweepers to a vertex of A', that is adjacent to A; [F,']. We then clear this vertex, 

and with the remaining free sweeper, we clear the edges of A',. Lifting the sweepers 

on A',[A;] along the perfect matching to A;, we clear A;. We now have 80 sweepers 

stationed on A;, 80 on A;, and 20 each on A;[Ci] and Ak[D',] leaving 81 free sweepers. 

We clear along the perfect matchings in the Ti, using the single remaining sweeper 

to clear each of the edges in the T,(, and finally clear the edges from Ti to A',. Now we 

move the 80 sweepers stationed a t  A', to LiOOIA;]. We use a single sweeper to clear 

all the edges in Ljoo[A',], and then move 80 more sweepers to the remaining vertices 

of Ljoo. We use the single free sweeper to clear all remaining edges in Ljoo. Then 

clear to L;,,, and use the single free sweeper to clear the edges in that subgraph, and 

continue until the edges in L', are cleared. Then send the sweepers from Li[A;] to 

A;, and use a free sweeper to clear all the edges in A;. There are now 80 sweepers 

stationed a t  each of A; and A;, and 20 stationed on A>[Di]. This leaves 101 free 

sweepers. 

We also clear the Ri as we cleared the Li, first sweeping from A; to Rjoo[A;], then 

using the 101 free sweepers with these 80 sweepers to clear all the R:. Then we move 

the sweepers from R', [A:] to A:, and use a single sweeper to clear the remaining edges 

of A:. We now have 190 sweepers stationed a t  A: and A',, leaving 91 free sweepers. 

We use these sweepers to clear the Bi subgraphs, and then we use 160 sweepers to 

clear A;. This clears the left half of the graph W. We now have only 80 sweepers 

stationed a t  A;. 

We now use 281 sweepers to clear, one by one, the 300 cliques between A; and Al,  

followed by Al itself. Then we move the sweepers from A1[A2] to A2, and use a free 

sweeper to clear all edges in A2. We now have 80 sweepers stationed in A2, leaving 

201 free sweepers. 

Pick a vertex in C1 and clear to this vertex from A2[C1]. Then move another 

sweeper along this edge, and to the corresponding vertex in C2. Then another to 

the corresponding vertex in C3, and so on, until finally we have placed a sweeper on 

the corresponding vertex in Ag[Clg]. Then move a sweeper to a vertex in Ag[D19], 

followed by moving a sweeper to a corresponding vertex in Dig, then another to a 

corresponding vertex in Dls, and so on, until sweeping to the corresponding vertex in 
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Dl. Finally, move one sweeper to the corresponding vertex in A4[D1] We now have 

80 sweepers stationed in A2, and in total, 41 sweepers along a path through the Ci, 

through Ag, and finally through the Di into A4. This leaves 160 free sweepers. 

Move these free sweepers along this path, to  the single vertex in A3 adjacent to 

the path. Clear this vertex, and then use the single free sweeper to clear As. Then 

the sweepers on A3[A4] may clear to A4, and a free sweeper may clear A4. With 110 

sweepers stationed on A4, 80 sweepers stationed on A2, and 40 sweepers strung in 

that path from A1 to A4 through As, there are 51 free sweepers. These sweepers can 

clear the Bi. 

We now collapse the path from A2 to A4 through As, in the following manner. The 

single sweeper in Dl  moves to the corresponding vertex in D2. The two sweepers now 

in D2 move to the corresponding vertex in D3. Continue in this way until finally all 

the sweepers in the path are in C1, a t  which point they return to A2[Cl]. By "reeling 

in" the path in this manner, we preserve the connectedness of this sweep, but the 

sweep is not monotonic. 

We now have 190 sweepers stationed on A2 and A4, leaving 91 sweepers free. Of 

these free sweepers, move 20 from A4 to Dl ,  using a free sweeper to clear D l .  Then 

clear D2, then D3, until finally we station 20 sweepers on A9[D19] and use a free 

sweeper to clear the edges of A9[D19]. NOW move the 110 sweepers on A4 to R1 [A4]. 

Use a free sweeper to clear the edges of R1 [A4]. Place the remaining 71 free sweepers 

on a vertex on R1 [A4] and clear it. With the single remaining free sweeper, clear R1. 

Then move all sweepers in R1 to R2, and use the remaining free sweeper to  clear R2. 

Repeating, clear to R300, finally moving 80 sweepers from R300[A5] to A5 and using a 

single free sweeper to clear A5. We now have 160 sweepers stationed a t  A2 and As, 

and 20 sweepers stationed a t  A9[D19]. This leaves 101 free sweepers. 

As with the Di, use 21 sweepers to clear the Ci: eventually stationing 20 sweepers 

a t  A9[C19], and using a free sweeper to clear the edges of A9[C19]. Then clear the 

80 sweepers from A2 to L1[A2], and use the 81 free sweepers to first clear a vertex 

in L1[A2] and then to clear L1. We then clear all the Li, eventually stationing 80 

sweepers at  A6 and using a free sweeper to  clear the edges of A6. We now have 

80 sweepers at  each of As and A6, and 20 sweepers at each of A9[C19] and A9[D19], 
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leaving 81 free sweepers. 

We use these sweepers to clear the Ti. Then we clear the Fi, eventually stationing 

20 sweepers on A9[F300], and using a free sweeper to clear the edges of Ag[F300]. We 

then move the 80 sweepers stationed at  A5 to A7[A5], and use a free sweeper to clear 

A7[A5]. With 80 sweepers at  A7[A5], 80 at  A6, and 60 in Ag, there are 61 free sweepers. 

Clear a vertex of A7[A5], and then use the single remaining free sweeper to clear A7. 

As before, clear all the Ei by sweeping from A6, eventually stationing 20 sweepers 

at A9[E300], and using a free sweeper to clear the edges of Ag [ E 3 ~ ~ ] .  Then move the 80 

sweepers stationed at As to &[A6], using a free sweeper to clear the edges of A8[A6]. 

We now have 80 sweepers stationed in Ag, and 80 sweepers stationed in As[A6]. The 

remaining 121 sweepers may be used to clear a vertex in A8[AG], and then the single 

remaining free sweeper may be used to clear the edges of As. 

Finally, with only 80 sweepers stationed in As (and thus 201 free sweepers), we 

clear a vertex in Ag, and then use the single remaining free sweeper to clear the edges 

of As, which completes the sweep strategy for W.  This strategy, as has been noted, 

is connected, but is not monotonic, as the edges in the path from A2 through Ag to 

A4 were allowed to be recontaminated. 

3.2.2 Computing the monotonic connected sweep number 

of W 

Theorem 3.12 We have mksw(W) = 290. 

PROOF. We first show that mksw(W) 5 290. Starting at A',, we may sweep as in 

Theorem 3.11 until we clear all the edges in A2. At this point, we have 80 sweepers 

stationed at  A2, and 210 free sweepers. Moving 50 of these sweepers to B1, we then 

use another free sweeper to clear the edges in B1. Then repeat with B2, B3, . . . , B3O0. 

Finally, station 50 sweepers at  A4[B300], and use another sweeper to clear all the edges 

in A4[B300]. We now have stationed 130 sweepers and have 160 free. 

We send these 160 sweepers to a single vertex in A3 that is adjacent to A4[B300]l 

and then clear this vertex. Using the single remaining free sweeper, we clear the edges 
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of A3. Then we lift the sweepers from A3[A4] to A4, and clear all remaining edges in 

A4. We now have 110 sweepers stationed at  A4, and 80 stationed a t  A2, leaving 100 

free sweepers. We use these sweepers to clear the Di, eventually placing 20 sweepers 

on A9[D19]. Using another sweeper, we clear the edges of A9[D19]. Then we move all 

the sweepers on A4 to R1[A4]. We have now stationed 80 sweepers on A2, 20 sweepers 

on A9[D19], and 110 on R1[A4]. This leaves 80 free sweepers. 

With these sweepers (and the 110 already in R1), clear the 8, and eventually 

station 80 at  A5, and use another sweeper to  clear the edges of A5. We now have 80 

sweepers stationed at  each of A2 and A5, and 20 stationed at Ag[Dlg]. This leaves 

110 free sweepers. 

Using these sweepers, clear the Ci: eventually stationing 20 at  A9[C19] and use a 

free sweeper to clear the edges of A9[C19]. We now have 90 free sweepers. Using these 

sweepers, and those from A2, we clear the Li, eventually stationing 80 sweepers on 

A6, With 80 sweepers stationed on each of A6 and A5, and 20 stationed on each of 

Ag[Clg] and Ag[Dlg], we have 90 free sweepers. Use these sweepers to clear the T,. 

Then use these sweepers to clear the F,,  eventually stationing 20 sweepers on Ag[F300], 

using a single free sweeper to clear the edges of A9[F300]. 

With 60 sweepers stationed in Ag, and 80 stationed at  A6, we have 150 (includ- 

ing 80 at  A5) with which we can clear A7. Then these sweepers can clear the Ei, 

finally stationing 20 sweepers at A9[E300], and clearing the edges of Ag[E300]. With 80 

sweepers in As, we have 210 sweepers (including 80 a t  As), with which we can clear 

As Finally, these 210 sweepers move to Ag and clear it. Thus mksw(W) 5 290. 

To prove the equality, we will show that mksw(W) > 289. First, assume that W 

is 289-monotonically connected sweepable. Let S be a monotonic connected sweep 

strategy using 289 sweepers. Let Y be the subgraph induced by W on the "right 

side" (starting with A2 and then to the right and above), and let Z be the subgraph 

obtained by adding the connecting 280-cliques from A; through Al. 

Because of the involution automorphism interchanging the right side and left side, 

we may assume the first cleared edge lies to the left of the 280-clique GIs0 or has one 

end vertex in Gljo. 
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We will make heavy use of vertex-disjoint paths determined by perfect matchings 

between successive cliques. The most important family of such paths is PI ,P2,. . .,PBo 

consisting of the 80 vertex-disjoint paths having one end vertex in A2 and the other 

end vertex in Glso along the chain of connecting 280-cliques. 

We call a clique pseudo-cleared if it contains exactly one cleared vertex. We are 

interested in which of A3, As or Ag is the first to be pseudo-cleared. Suppose Ag is 

the first of the three to be pseudo-cleared. At the moment the first vertex of Ag is 

cleared, there must be 280 exposed vertices in As. There must be a path Q from 

Glso to AQ in the subgraph of cleared edges. The path Q must pass through at least 

19 20-cliques. Since there are most 9 additional exposed vertices, at least one of the 

20-cliques, call it K ,  through which Q passes is cleared. From K ,  there are 20 vertex- 

disjoint paths back to A2 not passing through As. Without loss of generality, assume 

these 20 vertex-disjoint paths terminate at the end vertices of P1,P2,. . . , P 2 ~ .  Call the 

extensions of PI ,  P2,. . . , P20 to K by Q1 ,Q2 ,. . . ,Q20. 

For each Qi, 1 5 i 5 20, we examine what happens as we start working back from 

K along the path Qi. Since the clique K is cleared, the last vertex of Qi is cleared. 

That is, the last edge of Qi is cleared. Move to the preceding vertex. If it is not 

cleared, then we have encountered an exposed vertex on Qi. If it is cleared, then we 

move to the preceding vertex on Qi. 

If Qi passes through either A6 or A4, either we encounter an exposed vertex or the 

vertex ui of Qi in A6 or A4is cleared. But if the latter is the case, then the edge from 

ui to As or A3 is cleared. Since neither As nor A3 have any cleared vertices, we have 

found an exposed vertex corresponding to the path Qi. 

If Qi does not pass through A4 or A6, then either we encounter an exposed vertex 

or we reach the vertex ui of Qi in A2, with ui cleared. But now we extend a path 

from ui through the Lj-cliques to As and we must eventually encounter an exposed 

vertex. 

Therefore, each path Qi yields a distinct exposed vertex giving us at least 300 ex- 

posed vertices. We now see that Ag cannot be the first pseudo-cleared clique amongst 

A3, As, and Ag . 
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We next consider whether As can be the first pseudecleared clique amongst the 

three cliques. Assume this is the case. At the moment the first vertex of As is cleared, 

there are 200 exposed vertices in As. We again know that there is a path Q from 

GIs0 to As. Since Q passes through 150 280-cliques before reaching A2, one of the 

280-cliques must be cleared. This implies that each of the paths Pl , P2,. . . ,Pso contains 

a cleared vertex before reaching A:!. 

First suppose that Q passes through the Lj-cliques. Let Q1,Q2,. . ., Qso be the 

extensions of Pl ,P2,. . .,PsO through the Lj-cliques with end vertices in A6. Since there 

are 300 of the 160-cliques, a t  least one of the Lj is cleared. This implies that each Qi 

has a cleared vertex strictly between A2 and A6. Considering a fixed i, as we work 

from the cleared vertex in Qi between A:! and A6 towards A6, either we encounter 

an exposed vertex or the vertex vi of Qi in A6 is cleared. But now we extend from 

vi through the Tj-cliques, through As, down the Rj-cliques, through A4 into A3. We 

must encounter an exposed vertex at some point on this extension. Thus, each Qi 

produces one exposed vertex working towards A6, or past it as the case may be. 

Now work from the cleared vertex of Qi between A2 and A6 towards A2. Either we 

encounter an exposed vertex or we reach the vertex ui of Qi in A2. When ui is one of 

the 20 vertices adjacent to a vertex of C1, we extend towards Ag. We must encounter 

an exposed vertex a t  some point. Thus, we obtain another 20 exposed vertices giving 

us 300 altogether. We conclude that the path Q does not use the Lj-cliques. 

Let Q1 ,Q:!,. . .,Q80 be the same extensions of Pl ,P2,. . .,Pso as used above. Since 

each Qi has a cleared vertex before reaching A:! and there is no path from A2 to A6 

through the Lj-cliques in the cleared subgraph, every Qi has at least one exposed 

vertex on it that is not in As. This gives us 280 exposed vertices already. The path Q 

must pass through either e l , .  . . ,C19 or B1,. . .,B300. If it goes through C1,. . .,C19, then 

one of the 20-cliques must be cleared or we have too many exposed vertices. But if 

one of the 20-cliques is cleared, then upon building 20 vertex-disjoint paths from the 

20-clique to Ag, we get at least another 20 exposed vertices. 

If Q uses B1:. . .,B300, then we get a cleared 50-clique leading to another 50 exposed 

vertices in A3 using the same kind of path extensions via vertex-disjoint paths. This 

establishes that A3 must be the first pseudo-cleared clique amongst AJl As, and A9. 
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Assume this is the case. At the moment the first vertex of Ag is cleared, there are 
159 exposed vertices in A3. We again know that there is a cleared path Q from Glso to 

A3. Since Q passes through 150 280-cliques before reaching A2, one of the 280-cliques 

must be cleared. This implies that each of the paths Pl , P2, . . . , Pso contains a cleared 

vertex before reach A2. 

First suppose that Q passes through the R-cliques. Since there are 300 Ri-cliques, 

not every clique can contain an exposed vertex, so one of the cliques must contain 

none, and hence must be cleared. Call this clique K. Then certainly, there are 20 

vertex-disjoint paths that go from K to A4 and then through the Di cliques to Ag. 

Since K is completely cleared, and Ag contains no cleared vertices, somewhere on 

each of these paths there must be at least one exposed vertex. Similarly, consider 

20 vertex-disjoint paths that start in K, go through the R, through A5, and then 

through the Fi to As. By the same argument, each of these paths must contain an 

exposed vertex. 

If the path Q goes through the T,,  then one of the Ti must be completely cleared. 

Call this clique K'. From K '  there are 80 vertex-disjoint paths through the Ti into 

A6, and then to A8. Again, each of these paths must contain an exposed vertex. 

Finally, extending the paths P, ,  1 5 i 2 20, from A2, through the Ci, into As. Each 

of these 20 paths must also contain an exposed vertex. But this means that the sweep 

uses 159 + 20 + 20 + 80 + 20 = 299 exposed vertices, and hence as many sweepers, a 

contradiction. Thus, there is no cleared path through the Ti after going through the 

R. 

Instead, we consider if the path Q goes through the & and not through the Ti. 

Since the path does not go through the Ti, we consider the 80 vertex-disjoint paths 

that go from K ,  through A5, then through the Ti to TI. Each of these paths must 

contain an exposed vertex. ' Extending the paths Pi, 1 2 i 2 80, from A2, through the 

Li into As, then to  Ag, we must similarly encounter an exposed vertex on each. This 

means there are at least 159 + 80 + 80 = 319 exposed vertices, and hence too many 

sweepers. So, there is no cleared path through the R. 

Now suppose that Q passes through the Ti cliques. Since there are 300 T, cliques 
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at least one must be completely cleared. Call this clique K. Consider the 80 vertex- 

disjoint paths going from K, through the T,  into As, then through the R, to R3o0. 

Each of these paths must contain at least one exposed vertex. Similarly, the 80 paths 

from K through the Ti to  A6 into Ag must each contain at least one exposed vertex. 

This means the sweep must use at least 159 + 80 + 80 = 319 sweepers. So there is no 

cleared path through the R,. 

Suppose instead that Q passes through the Li. Since there are 300 Li-cliques a t  

least one must be cleared. Call it K. From K, through the Li to A6 into As, there are 

80 vertex-disjoint paths each of which must contain an exposed vertex. Since the path 

Q does not pass through the T,; it goes through the Ei. Since there are 300 of these 

cliques, one of the Ei must be cleared. Call it K'. There are 20 vertex-disjoint paths 

from K' to  As, each of which must contain an exposed vertex. Similarly the paths PI 

to P20 may be extended from A2 through the Ci to Ag, and each path must contain 

an exposed vertex. This accounts for 159 + 80 + 20 + 20 = 279 exposed vertices, and 

hence as many sweepers. If Q goes through the Bi, then some clique K" must be 

cleared, since there are a t  most 10 sweepers in all the Bi. Consider 50 vertex-disjoint 

paths that go from K" through the Bi into A4, through the R, to R3o0. Since there 

are no connected paths through the R,, each of the 50 paths must contain an exposed 

vertex, meaning the sweep must use at least 329 sweepers. Thus Q must go through 

the Di. But since there are at most 10 sweepers on this portion of the path, one of 

the cliques must be cleared. Call this clique K"'. From K"' through the Di to Ag, 

there are 20 vertex-disjoint paths, each of which must contain an exposed vertex, and 

thus this sweep must use 299 sweepers. Thus, Q does not pass through the Li. 

Suppose that Q passes through the Ci-cliques to As, then through the Di into 

A4, and finally to  A16@ If one of the Ci cliques does contain an exposed vertex, than 

each vertex in that clique must be cleared, and between that clique and A9[C19] there 

are 20 vertex-disjoint paths, each of which must contain an exposed vertex and a 

sweeper. Either way, along the Ci cliques and Ag[Clg] there must be 20 sweepers. 

Similarly, there must be 20 sweepers on the Di cliques and A9[D19]. Again, the paths 

Pl to Pso may be extended into vertex-disjoint paths from A2 through the Li-cliques 

to L3O0. These paths must contain at least 80 exposed vertices. At the moment 
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that A3 is pseudo-cleared, every vertex in A3 is exposed or cleared. Thus, there are 

110 vertex-disjoint paths from A3 to A4, through the R, to R300. This accounts for 

20 + 20 + 80 + 110 = 230 sweepers. 

We consider the next time certain vertices are cleared. Certainly, there is a clique 

L among the Li that contains no cleared vertices. Similarly, there is a clique R 

among the R, that contain no cleared vertices. We consider which of L,  R, or Ag first 

contains a cleared vertex. If Ag is the first that is pseudo-cleared, then there are still 

110 vertex-disjoint paths from R to A3 through the R, and A4 that must each contain 

an exposed vertex. Similarly, the extensions of Pl through Pso from A2 through the 

Li to L must each contain an exposed vertex. But when Ag first obtains a cleared 

vertex, there must be a t  least 280 sweepers in As, meaning such a sweep would require 

280 + 80 + 110 = 470 sweepers. If L is pseudo-cleared before Ag or R, then we still 

have the 110 exposed vertices as in the previous case. There are also still at  least 40 

exposed vertices amongst the Ci-cliques, Di-cliques, A9 [Ci], and Ag [Di] . But when 

L is pseudo-cleared, it must contain at  least 159 sweepers. But this sweep requires 

40 + 110 + 159 = 309 sweepers. Similarly, if R is the first of the three pseudo-cleared, 

the sweep must require 40 + 80 + 179 = 299 sweepers. 

Thus, the path Q must pass through the Bi. Since there are 300 Bi cliques, one 

must be completely cleared. Call it K .  There are 50 vertex-disjoint paths that go 

from K ,  through the Bi cliques to A4, then through the R, cliques to R3O0. Since there 

are no cleared paths through the R,, each of these paths must contain an exposed 

vertex. Similarly, vertex-disjoint extensions of PI, P2, . . , Pso from A2 through the 

Li to L3O0 must each contain at  least one exposed vertex. With at  least 159 sweepers 

on A3 when it is pseudo-cleared, this accounts for 50 + 80 + 159 = 289 sweepers. 

If any of the paths contain two or more exposed vertices, the sweep requires more 

than 289 sweepers. So, each path must contain exactly one exposed vertex. When A3 

is pseudo-cleared, if any cleared vertex in W contains a sweeper, then the sweep uses 

more than 289 sweepers. If there is more than one sweeper on an exposed vertex, then 

the sweep uses more than 289 sweepers. Thus, there is exactly one sweeper on every 

exposed vertex, and no other sweepers. Further, there are no other exposed vertices 

other than the 289 already considered. 
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Let v be a vertex in A4 that is not on one of the 50 vertex-disjoint paths. If v is 

cleared, then there is another path, vertex-disjoint from the other 50, the goes from v 

through the R, to R3O0. This path must contain an exposed vertex, a contradiction. 

Thus, every vertex in A4 that  is not on one of the 50 vertex-disjoint paths is incident 

with no cleared edges (since v cannot be exposed). Thus every vertex in Aq that is 

one of the vertex-disjoint paths must be either contaminated or exposed. Certainly, 

since the path Q passes through AQ, at  least one vertex w is exposed. 

These paths also pass through B3o0. If there is an exposed vertex u in B299, 

consider the path that w sits on. Certainly, the w and u cannot be on the same path, 

as they are both exposed. Both w and u have counterparts w' and u' in B3O0 on the 

same vertex-disjoint path. Since w is exposed, w' must be cleared, and hence u'w' is 

cleared. Since u is exposed, u' must be incident with no cleared edges, a contradiction. 

Thus, all exposed vertices on these 50 vertex-disjoint paths must be in A4[B300] or in 

B300. 

Every exposed vertex in A4 must be incident with a t  least 60 contaminated edges, 

so no sweeper on these vertices can move without allowing recontamination. For every 

exposed vertex v in B300, the edge from that vertex to A4[B300] is contaminated. If 

any other edge incident with v is contaminated, the sweeper on v cannot move. If 

no other vertices are contaminated, the sweeper has only one possible move, to the 

corresponding vertex in A4[B300], where it again sits on an exposed vertex and is 

incident with 109 exposed edges, and cannot move without allowing the graph to be 

recontaminated. 

Since we know that there are no exposed vertices in C1, there are also no cleared 

edges. Thus, every vertex in A2[C1] is either exposed or is incident with no cleared 

edges. Since Q passes through A2, we know that A2 must contain an exposed vertex, 

v. Assume that there is an exposed vertex w in G1. Both w and v have counterparts 

w' and v' in Al. Since v is exposed, v' must be clear, and hence v'w' must be a 

cleared edge. But since w is an  exposed vertex w' must have no cleared edge incident 

with it, a contradiction. Thus, there can be no exposed vertices in G1. By a similar 

argument, there can be no exposed vertices in L2. SO, of the 80 exposed vertices 

on the 80 vertex-disjoint paths from that have been extend from A:! to L300, all the 
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exposed vertices must be on Al,  A2, or L1. 

Since B1 can contain no exposed vertices, all vertices must be clear. (If not, there 

would be an exposed vertex between B1 and K.) Then, the vertices of A2[B1] must be 

either clear or exposed. If they are clear, then the vertices in A2[C1] must be exposed. 

The 50 vertices of L1[A2[B1]] must be exposed. Let A = V(A2) - (V(A2[B1]) U 

V(A2[C1]). Then there are in total 10 exposed vertices in A and B1[A]. Every vertex 

in A2[C1] is incident with two or more contaminated edges (from A2 to C1 and from 

A2 to L1), and so the sweepers on these vertices cannot move. The 50 sweepers on 

the exposed vertices of L1[A2[B1]] likewise cannot move, as each of these vertices is 

incident with at least 100 contaminated edges. Finally, if v is a vertex of A, and v is 

exposed, and incident with two or more contaminated edges, then the sweeper on v 

cannot move. If it is incident with only one contaminated edge, it must be to B1, and 

when the sweeper clears that edge it is again on an exposed vertex, this one incident 

with at least 100 contaminated edges, and hence cannot move. By the same argument, 

if a vertex in Bl[A] is exposed, it must be incident with at  least 100 contaminated 

edges, and hence its sweeper cannot move. 

If the vertices of A2[B1] are exposed, and the vertices of A2[C1] have no cleared 

edges incident with them, then the vertices of A are either exposed, or contain no 

cleared edges. Between A and A1 [A] there must be exactly 10 exposed vertices. Any 

vertex in A2 that is exposed is incident with at least 20 contaminated edges, so the 

sweeper on that vertex cannot move. Any exposed vertex in Al if not incident with 

two contaminated edges, must have a contaminated edge to A2. Upon clearing this, 

the sweeper is incident with at  least 19 contaminated edges and cannot move. 

Finally, if both the vertices of A2[B1] and of A2[C1] are exposed, then the other 

10 exposed vertices are between A, L1[A] and A1[A]. By similar arguments as before, 

every sweeper on an exposed vertex either cannot move, or can clear at most one more 

edge without being able to clear any further. 

Since this sweep strategy S is monotonic and connected, the first time there is an 

exposed vertex in A4, the 80 sweepers around A2 and the 50 sweepers on B300 or A4 

must already be in place. This leaves exactly 159 sweepers to clear a vertex in A,. 

As in Theorem 2.2, once this vertex is cleared, there are at  least two contaminated 
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edges incident with each vertex, and hence no sweeper in Ag can move. Since every 

other sweeper has at most one more move before being unable to move, there is no 

way to finish sweeping W, a contradiction. Thus, mksw(W) > 289. H 

3.3 Connected Sweeping and Graph Minors 

Figure 3.2: The graph X'  and its subgraph X .  

Referring to Figure 3.2, let X' = K100P60. We construct X as pictured, where 

each circle represents a complete graph on the number of vertices in the circle, and 

double lines between two cliques indicate a saturated matchng. 

Also, by construction, V ( X ~ ~ [ A ~ O ] ) ~ V ( X ~ I [ B ~ O ] )  = 0 = V(X~O[C~I])~V(X~O[D~I]). 
It is easy to see that X is a subgraph of XI. However, we can prove ksw(X) > ksw(X1). 

Theorem 3.13 For X as pictured in Figure 3.2, 

PROOF. Recall from Corollary 3.9 that sw(K100K2) = 11. Since X contains 

KloOK2 as a minor, by Theorem 2.15 we know that sw(X) 2 11. In fact, we can use 

11 sweepers to connected clear X ,  by first placing 5 sweepers on Al and 5 sweepers 

on B1. Then a single free sweeper can be used to clear all the edges in Al. Then 5 

sweepers move along the perfect matching to A2, and a single free sweeper clears all 
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the edges in A2, and so on, finally reaching X21[A20]. The single free sweeper moves 

to B1, and the process is repeated, clearing the Bi and moving to XZ1[Bz0]. With 10 

sweepers on XZ1, a single free sweeper may then clear all the edges of XZ1. These 11 

sweepers may then clear the Xi clique by clique, finally reaching X40. Stationing 5 

sweepers on X40[D41], the remaining 6 sweepers may clear the Ci. Then the Di may 

be cleared. Thus, sw(X) = 11. 

The graph X can be cleared by 16 sweepers in a connected sweep. Placing all 16 

sweepers on Al, we may use one free sweeper to clear the edges of Al. Then 5 sweepers 

may move to A2, and a free sweeper may clear the edges of A2, and so on, until finally 

XZ1[Az0] is cleared. Then we may place 5 more sweepers on the remaining vertices of 

X21, and use a free sweeper to clear the remaining edges in XZ1. Leaving a sweeper 

on each vertex of X21, there are 6 free sweepers. These sweepers may clear the Bi 

clique by clique. Then the 10 sweepers on Xal plus another free sweeper may clear 

the Xi through X40. Finally station 10 sweepers on X40. This leaves 6 free sweepers, 

who can be used to clear the Ci and the D;. Thus, ksw(X) 5 16. In the same manner 

as the proof that 289 sweepers are insufficient to clear W in Theorem 3.12, it can be 

shown that 15 sweepers are insufficient to clear X .  

To obtain a monotonic sweep, first place 6 sweepers on A1, and 6 sweepers on B1. 

The 6 sweepers on Al can clear the Ai, eventually stationing 5 sweepers on XZ1 [Azo]. 

The 6 sweepers on B1 can clear the Bi: eventually stationing 5 sweepers on XZ1[Bz0]. 

Then we may follow the same strategy as the sweep above. Thus msw(X) 5 12. 

Let S be a monotonic sweep strategy for X. Again, consider the point when 

the graph goes from having no cleared vertices to exactly 1 cleared vertex v. Since 

ksw(X) = 16, we know that this sweep must not be connected. Thus, at some point 

a vertex w is cleared such that there is no clear path from v to w. If v is in some Xi, 

and w is in Xi, then there are at least 22 exposed vertices, and as many sweepers. If v 

is in some Xi, and w is in some 5-cliques, then there are at least 16 exposed vertices, 

and as many sweepers. The same is true if v is in some 5-clique and w is in some 

10-clique. Finally, we consider if v is in some 5-clique (without loss of generality, some 

Ai-clique) and w is in some 5-clique. 

If v is in Aj, 2 2 j 5 20, then when it is cleared its neighbouring vertices must 
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contain at least 6 sweepers. Consider the subgraph induced by the cleared edges at 

this point, and the component that v is in. If this component contains exactly 6 

sweepers, than as in the proof of Theorem 2.2, each of the exposed vertices adjacent 

to v must be incident with at least two contaminated edges. Thus none of the six 

sweepers can move without allowing recontamination. When w is cleared, it has at  

least 5 exposed neighbours. If it contains no more that 5 sweepers in the component it 

belongs to of the subgraph induced by the cleared edges: then none of these 5 sweepers 

may move with allowing recontamination. Thus, there must be another sweeper in 

the graph. 

Instead, we consider if v is in AI.  If w is a vertex that is not in B1, Cso, or Dso, 

then we have the same argument as in the previous case. In the subgraph induced by 

the cleared edges, each of the components these two vertices belong to must contain 

at  least 5 sweepers. If both have exactly 5, then since these sweepers cannot move 

without recontaminating edges, there must be at least one more sweeper. Consider 

the next edge cleared. If the next edge cleared is not incident with a vertex in either of 

the cleared components containing v or w, since the minimum degree of this graph is 

5, two sweepers must be used to clear the edge. This accounts for at  least 12 sweepers. 

Instead, we assume that the next edge cleared in S must be incident with one of 

the cleared components. The same argument applies to the edge that is next cleared. 

If it is not incident with either connected component, then the sweep must use at  

least 12 sweepers. This continues to be true until there is a connected path between 

v and w. If: in S ,  the connected components that contain u and v both continue to 

"grow" by clearing edges incident with them, then both components must contain at 

least 6 sweepers. We instead consider if only one of the cleared components continues 

to clear incident edges. Without loss of generality, assume that this component is the 

one containing I;. 

We consider how this component could expand. Before the cleared path from w 

to v is formed, if the component containing u ever contains a cleared vertex x in some 

Xi, consider the first time it happens. At the point x is cleared, it must have at  

least 10 exposed neighbours in Xi-cliques. Each must contain a sweeper. Since that 

are also at  least 5 sweepers in the clique containing w, this accounts for at least 15 
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sweepers. If the cleared component containing v does not contain a cleared vertex of 

some Xi-clique before the cleared path from v to w is formed, consider the first time 

that an edge between Xzo and Bzo is cleared. (This must occur before the path from 

v to w is formed. There are 5 vertex-disjoint paths from X21[A20] to Al. Since there is 

a cleared vertex in Al, but none in Xzl, each of these paths must contain an exposed 

vertex, and hence a sweeper. But if an edge is cleared in between Xzl and B20, there 

must be a sweeper in B20 and another in Xzl[Bzo]. Since there are at  least 5 sweepers 

in the cleared component containing w, this accounts for at  least 12 sweepers. Thus, 

every monotonic sweep strategy on X must use at  least 12 sweepers. . 
We now consider the graph XI. 

Lemma 3.14 For the graphs X and X', ksw(X) > ksw(X1) 

PROOF. Since Xi  contains KloOK2 as a minor, we know by Theorem 2.15 and 

Corollary 3.9 that ksw(Xi) 2 11. In fact, we can use 11 sweepers in a connected 

sweep to clear X', by placing 10 sweepers on X1, and then using a single free sweeper 

to clear all the edges in X1. Then 10 sweepers move along the perfect matching to 

X2, and a single free sweeper clears all the edges in X2, and so on, finally reaching 

XGO. Thus, ksw(X1) = 11. 

From the proof of Theorem 3.13, we know that ksw(X) = 16, and the result 

follows. . 
Since X is a subgraph of X', this lemma has an immediate consequence, as ob- 

served in [4]. If H is a minor of a graph GI  then in contrast to Theorem 2.15, it does 

not follow that ksw(H) =< ksw(G). 

3.4 Monotonic Sweeping and Graph Minors 

Continuing in the same vein, let Y' = K10UP120, and Y be as pictured in Figure 3.3, 

where circles and double lines are defined as above. It is easy to see that Y is a 

subgraph of Y'. 

Theorem 3.15 For graphs Y and Y' as given, msw(Y) > msw(Y1). 
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Figure 3.3: The graph Y' and its subgraph Y 

PROOF. We first note that KloDK2 is a subgraph of Y', and thus 11 2 msw(Y1). 

Also, Y' can be cleared using the same strategy as used for X' in Lemma 3.14. Thus, 

msw(Y1) = 11. 

The graph Y can be cleared by 16 sweepers in a monotonic fashon. Place 16 

sweepers on Al. Use 6 sweepers to clear the Ail stationing 10 sweepers on Yzl. Use 

the six remaining sweepers to clear the Bi. Clear to YdO, stationing 10 sweepers on 

KO.  This leaves 6 free sweepers that can be used to clear the Ei. Then the sweepers 

may clear to Y80, stationing 10 sweeper there. The remaining 6 free sweepers may 

clear the Fi. Then all the sweepers may clear to Yloo, stationing 10 sweepers there. 

The 6 remaining sweepers may clear the Ci and then the Di. Thus, msw(Y) 2 16. 

In the same manner as the proof that 289 sweepers are insufficient to clear W in 

Theorem 3.12, it can be shown that 15 sweepers are insufficient to clear X. 

As before, since Y is a subgraph of Y', there is an immediate corollary, as observed 

in 141. In contrast to Theorem 2.15, if H is a minor or G, then it does not follow that 

msw(H) 5 msw(G). 

3.5 Inequalities 

Theorems 3.11 and 3.12 can be summarized with the following result. 

Corollary 3.16 For the graph W, ksw(W) = 281 < 290 = mksw(W). 
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Recall that there are three inequalities in Lemma 1.3. Corollary 3.16 shows that 

the final inequality can be strict, and Theorem 3.13 shows that the first pair may also 

be strict. This leads us to construct a single graph H for which the three inequalities 

strictly hold (see Figure 3.4). 

Theorem 3.17 For the graph H as given, sw(H) < msw(H) < ksw(H) < mksw(H). 

This graph H has sw(H) = 561, msw(H) = 570, ksw(H) = 841, and mksw(H) = 

850. The proofs of these claims follow in the same manner as the proofs of Theo- 

rems 3.11, 3.12, and 3.13. 

In Corollary 3.16 we showed that a graph W existed with ksw(W) < mksw. The 

graph W is quite large, containing almost 400,000 vertices. The large strings of 300 

identically sized cliques were constructed so that they would be impossible to "sneak" 

through, and the Ci and Di were constructed so that they could be "sneaked" through. 

We showed that the difference between ksw(W) and mksw(W) was 9, though in 

fact, the difference can be much smaller. For instance, we could reduce the size of 

cliques and length of "paths" by an approximate factor of 5 and then prove that 

ksw(W~)  = 57 and mksw(W1) = 58. (This corresponds to letting k = 3 in the follow- 

ing construction.) However, these results, while valid, are more easily demonstrated 

by using larger cliques and longer paths to make the difference more believable. 

From the graph W, we may define a family Wk of graphs constructed as fol- 

lows for k 2 1. In Wk, the 300 cliques of the R, (and R:) are replaced by 300k 

cliques of order 180k. Similarly, the T,  (and T,!) are replaced by 300k cliques of 

order 80k, the Bi (and B:) are replaced by 300k cliques of order 50k, the Li (and 

L:) are replaced by 300k cliques of order 160k, the Ei (and E,O are replaced by 

300k cliques of order 20k, the Fi (and F,!) are replaced by 300k cliques of order 

20k, and the Gi are replaced by 300k cliques of order 280k. The cliques A2, As, 

As, Ah, A;, and A; are replaced by cliques of order 80k. The cliques A4 and 

Ai, are replaced by cliques of order 110k. The cliques Ag and A; are replaced 

by cliques of order 160k. The cliques Al and A', are replaced by cliques of order 

280k. The 19 cliques that make up the Ci are replaced by 20k - 1 cliques of or- 

der 20k. Similarly for the C,!, Di, and D:. The cliques A8 and Ak are replaced by 
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Figure 3.4: The graph H. 
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cliques of order 200k + 1, the cliques A7 and A; are replaced by cliques of order 
140k + 1, and the cliques A9 and A; are replaced by cliques of order 280k + 1. 

The resulting graphs Wk are "scaled up" version of W, with appropriately changed 

sweep numbers. Using an argument similar to those in the proofs of Theorems 3.11 

and 3.12, we can prove the following theorem. 

Theorem 3.18 For k 2 1, ksw(Wk) = 280k + 1, and  mksw(Wk) = 290k. 

So, certainly, the difference between these two values can be arbitrarily large. 

In the same manner, we may create families of graphs Xk (and X;) and Yk (and 

YL) based on X (and X') and Y (and Y'). This is done by replacing cliques of order 

5 with cliques of order 5k and cliques of order 10 with cliques of order 10k, and 

lengthening "paths" of cliques of the same order by a factor of k. (For instance, in 

X, rather than having 20 cliques of order 10 make up the Xi, they would be replaced 

by 20k cliques of order 10k.) The results for these families are summarized below. 

Theorem 3.19 For k 2 1, ksw(Xk) = 15k + 1; msw(Xk) = 10k + 2; ksw(X;) = 

10k + 1; msw(Y) = 15k + 1; and  msw(Y1) = 10k + 1. 

This result tells us that the difference between the monotonic sweep number of 

a graph and the connected sweep number can be large. As well, the results tell us 

that in the case of connected and monotonic sweeps, a subgraph may need arbitrarily 

more sweepers than a supergraph. 

Finally, the graph in Figure 3.5 is a similarly "scaled up" version of the Y-square 

(pictured in Figure 1.1). Here, edges are replaced by "paths" of cliques, with each 

path containing k2 cliques of size k. This increases the sweep number to 31; + 1, and 

the monotonic sweep number to 4k, again showing that the difference in these values 

can be quite large. 
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Figure 3.5: The kY-square. 

3.6 Variation on the required number of sweepers 

We know the maximum number of exposed vertices in a connected graph is at most 

the sweep number of the graph. Of course, most of the time, the number of exposed 

vertices is much less than this maximum. In a real world situation, most sweepers 

not on exposed vertices could "go away," and would only return when needed. So we 

would be interested in sweep strategies that minimize the number of exposed vertices 

at  each step. For a graph G, the sequence of exs(G, i) for any S could vary greatly. 

The following theorem illustrates just how great this variance can be. 

We first construct a graph Z as pictured in Figure 3.6, where the ai are positive 

integers, and M = max ai + 5. (The value 5 is added as a safety margin.) 
1 si s n  

Theorem 3.20 Given a finite sequence of positive integers, al, a2, . . . , a,, then with 

Z as given, every monotonic connected sweep strategy S of Z that uses mksw(Z) 

sweepers and minimizes the number of exposed vertices at each step has the property 

that there exist integers kl < k2 < . . . < k, such that exs(Z, ki) 2 a,. 

PROOF. Since Z contains an M-clique, we know that sw(Z) 2 M. Further, there 

is a monotonic connected sweep strategy using M sweepers. First, clear M ,  then 
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Figure 3.6: The graph 2 .  

the first al + 1 clique, then the next, and so on, moving from left to right. Thus, 

mksw(2) = M. 

Let v be the first vertex cleared in a monotonic connected sweep strategy S on 2 

using M sweepers. If v is not in one of the M-cliques, then there is a cleared edge e in 

some other clique. There are at least two vertex-disjoint paths that pass through the 

vertices of e to either M. The first time that a vertex is cleared in either M-clique, 

there are M - 1 sweepers on that clique. But at the same time, there are two vertex- 

disjoint paths from the vertices of e to the other M-clique. These two paths must 

contain at  least one exposed vertex, and hence one sweeper. But t h s  sweep then uses 

M + 1 sweepers. Thus, v must be in one of the M-cliques. 

Let i < j. Consider ai and aj. Assume that no ai + 1 clique obtains a cleared 

vertex before all the aj + 1 cliques. Let w be a cleared vertex in one of the aj + 1 

cliques. Since S is a connected sweep strategy there is a cleared path between v and 

w. But this pass must pass through the ai + 1 cliques, of which there are M + 1. Since 

these cliques contain no cleared vertices, there must be at least one exposed vertex 

in each of the ai + 1 cliques, and hence at least M + 1 sweepers in the a, + 1 cliques. 

Since this uses too many sweepers, some ai + 1 clique must contain a cleared vertex 

before d l  the aj + 1 cliques do. When the ai + 1 clique first contains a cleared vertex, 

there are at  least ai exposed vertices. 



Chapter 4 

Sweeping Digraphs 

4.1 Elementary bounds 

Returning to digraphs, Theorem 4.1 follows directly from the definitions of the sweep 

ing models. We recall that s w ~ , ~  (D) is the strong sweeper number, that swill (D)  is 

the directed sweep number, that swoPo(D) is the undirected sweeper number, and that 

swl,0(D) is the weak sweep number. 

Theorem 4.1 If D is a digraph, t h e n  s w ~ , ~ ( D )  5 swlVl(D) swl,0(D) and  s w ~ , ~ ( D )  2 
swo,o(D) 5 sw1,0(D). 

All of these equalities can be achieved; one only need consider a directed path. It 
4 4 4 

is easy to see that for P,, S W ~ . ~ ( P ~ )  = SW~,~ (P , )  = 1. 

The inequalities can also be strict. Consider the transitive tournament TT,. We 

will see in Corollary 4.15 that SW,,~(TT,) = 151. Since the undirected graph under- 

lying TT, is the complete graph K, on n vertices, SW~,~(TT, )  = n by Corollary 2.4. 

By considering the acyclic ordering of TT,, we see that SW~,~(TT, )  = 1. First, use the 

single sweeper to clear all the arcs from the source. (A single sweeper suffices because 

it may return to the source while the intruder cannot.) Then the subtournament 

induced by the contaminated arcs induces TTn-l, and the process may be repeated. 
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Figure 4.1: The graphs D and E. 

The underlying undirected graph is P3, and thus swoto(D) = 1. However, S W ~ , ~ ( D )  = 

2. 

Let E be the digraph with vertex set {vl, v2, v3, v4) and with arc set {(vl, v2), 

(v2, v3), (v3, vl), (v2, v4), (v4, vl)). We claim swlYl ( E )  = 2. Place a sweeper on vl, then 

use another sweeper to clear (vl, v 2 )  Use this extra sweeper to clear a directed path 

from v2 to vl, and then clear the other directed path from v2 to vl. It is obvious that 

one sweeper cannot clear E ,  since one sweeper is insufficient to clear even one arc. But 

swl,0(E) = 3. To see that three sweepers are sufficient, place a sweeper on vertices 

vl and v2, and use a third to  clear all the arcs. However, two are not sufficient. Two 

sweepers can be used to clear two arcs, but cannot clear a third. Thus, three sweepers 

are necessary to clear E in the weak sweep model. 

Furthermore, the directed sweep number and the undirected sweep number are not 

comparable. Consider the digraph D described above. Remembering that S W ~ , ~ ( D )  = 

1, we can also see that in this case (D) = swlYo(D) = 2. However, consider the 

digraph T c  formed from TT4 by reversing the single arc from source to sink. Then 

SW~,~(TT,*) = 4, but SW~,~(TT,*) = 2. (In general, swo,~(TT,*) = n, and SW~,~(TT,*) = 

2-1 

To make calculation of the various sweep numbers easier, we introduce some el- 

ementary lower bounds involving minimum in-degree. This theorem parallels Theo- 

rems 2.1 and 2.2. 

Theorem 4.2 If D is a digraph, then S W ~ , ~ ( D )  2 6-(D) + 1, s w ~ , ~ ( D )  2 6-(D), and 
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PROOF. Consider a directed sweep strategy that employs a minimum number of 

sweepers. At some stage we must have the first instance of a clear vertex, call it x. 

The last move before x is cleared must be that of a sweeper moving along an arc 

coming in to x, say along the arc (z, x). Since z is not clear, it must be the case that a 

sweeper remains on z at this stage of the process else we immediately recontaminate 

the arc (z,x).  Similarly, every other vertex with an arc directed towards x must be 

occupied at this stage, and thus swl,l (D)  2 &(D) + 1. 

The second inequality follows in a similar manner. If the arc (z, x)  is cleared 

from z to x, there must be a sweeper on z to prevent recontamination. There also 

needs to be a sweeper on every other vertex with an arc directed towards x, and so 

swo,l (D)  2 6-(D) + 1, and so certainly swo,l (D) 2 6-(D). However, it is possible that 

the arc (z, x) is cleared by moving a single sweeper from x to z against the direction 

of the arc. In this case, all we can say is that ~ w o , ~ ( D )  2 6-(D). 

The final pair of inequalities comes from Theorem 4.1 and from recalling that the 

undirected sweep number is equal to the sweep number of the underlying undirected 

graph. 

After considering in-degree and out-degree, it is natural to consider the score 

sequence. However, this is not an interesting parameter to consider, a t  least from 

the perspective of the directed sweep number. For example, the almost transitive 

tournament on 7 vertices, TT;, has score sequence 1 ,1 ,2 ,3 ,4 ,5 ,5 ,  and (TF)  = 

2. Let S be a tournament on the vertices vi, 1 2 i 2 7, and arcs (vi, vj) for all 

i < j ,  except the arcs (v7, us), (us, v3), and (us, vl). Then S also has score sequence 

1:1 ,2 ,3 ,4 ,5 ,5 ,  but S W ~ , ~ ( S )  = 3. 

4.2 Characterizing 1-sweepable digraphs 

In the case of graphs, characterizations are known for graphs that are k-sweepable, 

for k 3 [14]. It is natural to consider analogous characterizations for digraphs with 

respect to the various sweep models. We begin by characterizing those digraphs that 
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are 1-sweepable. 

Theorem 4.3 If D' is a subdigraph of a digraph D ,  and the undirected graph under- 

lying D' is connected, then s w ~ , ~ ( D ' )  2 sw0.1 (D).  

PROOF. Let S W ~ , ~ ( D )  = k, and let S be a strong sweep strategy that clears D 
with k sweepers. We will construct a strong sweep strategy S' to sweep D' with k 

sweepers. Initially, place the sweepers on vertices in V(D1) that correspond to vertices 

in V(D). If a sweeper is supposed to be placed on a vertex of V(D) that is not in 

V(D1), then place the sweeper on the first vertex it is supposed to move to that is in 

V(D1). If no such vertex exists, place the sweeper anywhere in V(D1). 

Assume that the next action in S is to move a sweeper along the arc (u,v). If 

neither u nor v is in V(D1), do nothing. If u is in V(D1) but v is not, then do 

nothing. If v is in V(D1), but u is not, then since the undirected graph underlying D' 

is connected and sweepers may move against the direction of arcs, move the sweeper 

from where ever it is to the vertex v. If u and v are both in V(D1), and if (u,v) is 

an arc in A(D1), move the sweeper from u to v along the arc. If (u, v) jl A(D1), then 

since D' is weakly connected, move the sweeper from u to v along some path from u 

to v. 

Since only arcs (and vertices) are removed, it is clear that when an arc (u,v) 

exists in both Dl and D, then if S clears (u, v) in D ,  then S' must also clear (u, v) 

in Dl. Similarly, if an arc is ever recontaminated in D' under S' is must also be 

recontaminated in D under S .  H 

Unlike strong sweeping, directed sweeping allows for subdigraphs to have a higher 

sweep number than their superdigraphs. Recall the almost transitive tournament 

TT;. The directed sweep number of this digraph is merely 2. But if we remove the 

reversed arc to obtain a digraph D ,  it is not hard to prove that S W ~ , ~ ( D )  = 3, even 

though D is a subgraph of TT;. 

We next consider the special case in which D is acyclic (here all of the strong 

components Di are of order 1). The arc digraph L(D) of a digraph D is the digraph 

where V(L(D)) = A(D), and ((a, b): (c,d)) E A(L(D)) if and only if (a, b) and (c,d) 
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are arcs of D and b = c. The width wd(D) of a digraph D is the minimum number 

of directed paths in D whose union is V(D). The following result characterizes the 

weak sweep number for acyclic digraphs [16]. 

Theorem 4.4 If D is an acyclic directed graph, then swl,o(D) = wd(L(D)). 

In sharp contrast to the weak sweep number, the strong sweep number is much 

smaller for acyclic digraphs. 

Theorem 4.5 If D is an acyclic digraph, then s w ~ , ~ ( D )  = 1. 

PROOF. Consider an acyclic ordering of D, where the vertices are labelled vl, v2, 

. . ., v, and if (vi,vj) E A(D), then i < j .  Place the single sweeper on vl. A single 

sweeper is sufficient to clear all arcs incident with vl as the sweeper may move against 

the direction of arcs. These arcs cannot be recontaminated, as the intruders cannot 

move against arc direction. Then repeat with vz, and so on. W 

Interestingly, acyclic digraphs are not the only digraphs for which a strong sweep 

strategy exists using exactly one sweeper. For instance, consider the directed cycle 
+ --+ 
C,. Place a single sweeper anywhere on C,, and begin moving against the direction 

of arcs. This clears the arc, and since the intruder cannot move against arc-direction, 
+ 

the arcs must remain clear. Thus S W ~ , ~ ( C , )  = 1. 

Theorem 4.6 If D is a strong digraph and CvEv(D) df (v) 2 n+2, then swo,1 (D) 2 2. 

PROOF. Assume that swojl(D) = 1. Since D is strong, every vertex has non-zero 

in-degree and out-degree. This means that the only way to clear an arc using only 

one sweeper is to move along the arc in the direction opposite the arc. Also, since 

df (v) 2 n + 2 ,  either two or more vertices have in-degree a t  least two, or 

exactly one vertex has in-degree at least three. 

Case 1. The digraph D has at least two vertices with in-degree at least two. Let 

u and v be two vertices such that d-(u) 2 2 and d-(v) 2 2. Consider a strong sweep 

of D that uses exactly one sweeper. If the sweep begins at vertex w jf {u, v), then 
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the sweeper begins clearing arcs until finally it reaches (without loss of generality) u. 

At this point, when the sweeper clears any arc incident u, the entire digraph cleared 

to this point becomes recontaminated. Thus, the sweep must begin a t  u. 

If the sweep begins at u, then the sweeper clears arcs until it reaches v. Then if 

the sweeper clears any arc incident with u, all of the digraph cleared to this point 

becomes recontaminated. Thus, there cannot be two vertices with in-degree at least 

two. 

Case 2. The digraph D has exactly one vertex with in-degree at least three. Let 

u be the vertex with d-(u) 2 3. Consider a strong sweep of D that uses exactly 

one sweeper. If the sweep does not begin at u, then it must eventually reach u, at 

which point no further arcs can be cleared without recontaminating all arcs previously 

cleared. Thus, the sweep must begin at u. A sweep beginning at u must eventually 

reach u again, at which point there are at least two arcs that are contaminated. 

Neither of these arcs can be cleared without recontaminating all the arcs previously 

cleared. Thus, there cannot be a vertex with in-degree at least three. . 
So, for a strong digraph D with S W ~ , ~ ( D )  = 1 that contains arcs, either 

CVEV(D) d+(v) = n or C,,v(D) d+(v) = n + 1. If the former holds, since every vertex 

has non-zero in-degree and out-degree, then D must be an n-cycle. If the latter holds, 

then there must be exactly one vertex with in-degree two, and exactly one-vertex with 

out-degree two. Again there are two cases. If the vertex with in-degree two is the 

same as the vertex with out-degree two, then D is made up of two directed cycles 

with a single common vertex. If the vertex of in-degree two is distinct from the vertex 
-+ 

of out-degree two, then D is a directed cycle Cn with a suspended directed path from 
-+ -+ 

one vertex of Cn to a distinct vertex of Cn. 

The idea of strong components allows us to define a special digraph. 

Definition 4.7 The vertices of the strong components D l ,  D2, . . ., Dm of D partition 

V into sets and this partition is called the strong decomposition of D. The strong 

component digraph S ( D )  is obtained by contracting each of the strong components of 

D to a single vertex and deleting any parallel arcs formed. 

In particular, the strong component digraph is an acyclic digraph. 
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Figure 4.2: The non-trivial strong digraphs that are 1-strong-sweepable. 

Theorem 4.8 A dzgraph D is 1-strong-sweepable if and only zf every strong compo- 

nent of D is one of the three digraphs described above or a single vertex. 

PROOF. If S W ~ J ( D )  = 1 and D is strong, then it is either a vertes or one of the 

digraphs described above. On the other hand, if D is not strong, then it must have 

strong components. Since strong components are subdigraphs, by Theorem 4.3 they 

must have strong sweep number 1, and hence be as described above. 

If D is digraph where every strong component is described as above or a single 

vertex, we consider the strong component digraph S(D).  Since S(D)  is acyclic, we 

consider an acyclic ordering, with vertices Dl,  D2, . . ., Dm ordered such that if (Di, Dj) 

is an arc, then i < j .  Of course, each Di corresponds to a strong component in D. 

We construct a strong sweep strategy S for D as follows. If the next arc to be cleared 
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in S ( D )  is (Di, Dj), then we clear all the arcs between the components Di and Dj in 

D. Then if D j  has all incoming arcs cleared in S(D)  (and hence in D) ,  use the single 

sweeper to clear the component Dj. The strategy S clears D with one sweeper and 

the result follows. W 

For the other sweep models, a characterization of 1-sweepable proves much eas- 

ier. From [14], we know that those graphs with sweep number 1 are paths. This 

immediately gives the following corollary. 

Corollary 4.9 For a digraph D, S W ~ , ~ ( D )  = 1 if and only if D i s  an orientation of 

a path. 

In a directed sweep, there are only two ways to clear an arc as described earlier. 

One of the ways requires two sweepers, so any digraph which is 1-sweepable must only 

use the other. That is, a digraph that is directed 1-sweepable allows an arc (u, v) to 

be cleared only when incoming all arcs at u are already cleared. 

+ 
Theorem 4.10 For a digraph D, S W ~ , ~ ( D )  = 1 if and only i f  D = P,. 

+ 
PROOF. Certainly, S W ~ , ~  (P,) = 1. Now consider a digraph D that has directed 

sweep number 1. If (u,v) is the first arc cleared, then d-(u) = 0, by the preceding 

comments. If any other vertices have in-degree 0, then the single sweeper cannot reach 

them. Thus, every other vertex must have non-zero in-degree, and u is the unique 

source of D,  and the sweeper must begin at u. 
+ 

Certainly, the only digraph of order two that has sw1,~(D) = 1 is P2. Proceeding 

by induction, we consider a digraph D with (D)  = 1 on n vertices. As argued 

above, the vertex that the single sweeper starts on must be the unique source u in 

the digraph. After the first move, there is no way to return to u, so the out-degree 

of u must be exactly one. Consider the digraph D - {u). This is a digraph on n - 1 

vertices that can be cleared by one sweeper by following the strategy of D. Thus, - + 
D - {u} must be Pn-l, and hence D = P,. W 

Finally, since weak sweeping is a restriction of directed sweeping, if a digraph D is 

such that SW, ,~(D)  = 1, then necessarily, S W ~ , ~  (D) = 1. Since directed paths can also 
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be swept by a single sweeper in the weak sweeping model, we obtain the following 
corollary. 

Corollary 4.11 For a digraph D ,  S W ~ , ~ ( D )  = 1 if and only if D = E.  

4.3 Strong Digraphs 

As with digraphs, the strong decomposition of a reducible tournament is a partition 

of the vertex set into strong subtournaments T1,T2;. . ., Tm in which all vertices in Ti 

have arcs to all vertices in Tj whenever i < j .  A special case of this occurs when each 

T,  is of size lTil = 1, that is, we have the transitive tournament TTm on m vertices. 

Suppose that for some D we have that S (D)  is a directed path P and that D l ,  

D2,  . . ., Dm, for some m > 1, are the strong components of D .  Let the weight of the 

path P be w ( P )  = maxij (swl,l(Di), d+(Dj)). 

Theorem 4.12 If S(D) is a directed path P and Dl ,  D2, . . . , Dm, for some m > 1, 

are the strong components of D ,  then swl,l(D) = w(P) .  

PROOF. Clearly S W ~ , ~ ( D )  2 swlVl(Di) for each i. On the other hand, in the obvious 

linear ordering of the Djls, each arc joining a vertex of D j  to a vertex of Dj+1 requires 

a different sweeper and swl,l(D) 2_ d+(Dj). Suppose that indeed w(P) = s w ~ , ~ ( D i )  

for some i, then we may place that many sweepers on Dl ,  clear it and then place at  

least as many sweepers on each vertex of Dl  as there are arcs from it to Dz. We then 

proceed to D2 by traversing the arcs from Dl  to D2, clear it and so on, using at  most 

w(P)  sweepers in total. If instead for some j ,  w(P)  = d+(Dj) > ~ w ~ , ~ ( D i )  for all i, 

then these suffice to clear any Di and the arcs to Di+l, starting at  i = 1, and the 

equality in the theorem follows. 4 

We obtain an immediate corollary. 

Corollary 4.13 If S ( D )  is a directed path P and D l ,  D2, . . . , Dm, for some m > 1! 

are the strong components of D ,  then swo,l(D) = maxi ( s w ~ , ~ ( D ~ ) ) .  
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A variation of the above is the following: 

Corollary 4.14 If the vertices of some tournament T can be partitioned into sets A  

and B i n  such a way that every vertex i n  A  dominates evenj vertex i n  B,  that is, T 

is reducible, then swlVl (T) 2 \ A \  I BI. 

In the special case of D being a tournament in which each Di is of size one we 

have the following result. 

Corollary 4.15 I f T  = TT, is a transitive tournament, then S W ~ , ~ ( T )  = ~ $ 1 .  

PROOF. If n = 2t, then swlYl(T) = t2 by choosing A  in Corollary 4.14 to be the 

t vertices of highest score. By sweeping the vertices in non-increasing order of their 

scores, we see that v, requires 2t - 1 sweepers to clear all of its outgoing arcs; vertex 

vnPl requires 2t - 2 sweepers to clear all of its outgoing arcs but a sweeper has been 

obtained from v, thus we need only 2t - 3 new sweepers; vertex v,-2 requires 2t - 3 

sweepers to clear all of its outgoing arcs but 2 sweepers have been obtained from v,  

and thus we need only 2t - 5 new sweepers; and so on. In total the number of 

sweepers required is t2. If n is odd the result follows in a similar manner. H 

Corollary 4.15 is especially interesting when considered in the light of the number 

of paths in a path decomposition of TT,. A path decomposition of a digraph D is 

a partition of the arcs of D into a minimum number of directed paths. We denote 

this minimum number of paths m(D).  It was shown in [2] that for any tournament 

T ,  m(T) < ~$1, with equality holding if T is transitive. Thus, combined with 

Corollary 4.15, we see that a sweeper may sweep each path in the decomposition, so 

that every arc is traversed exactly once. Since this would be a strategy that clears 

the transitive tournament on n vertices with fewest arc traversals and the minimum 

number of sweepers, this can be considered an optimal strategy. 

In marked contrast to Corollary 4.15, we note that for the T, that differs from TT, 

only in that vertex vl dominates vertex v,, we have S W ~ , ~ ( T )  = 2 - we may leave a 

sweeper on v, while we clear all of its outgoing arcs with just one other sweeper and 

then move on to other vertices in order. Corollary 4.15 may also be considered as a 

special case of the following. 
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Corollary 4.16 IfT is a reducible tournament with strong decomposition TIJT2, . . ., 
T m J  then swi,l(T) = max, ( x i = ,  IT') - (xzj+, 1 ~ 1 ) .  

PROOF. By Corollary 4.14 we need only show that this number of sweepers suffice. 

It is not difficult to show that  for any tournament R, S W ~ , ~ ( R )  5 IRI. Thus, by 

partitioning the vertices of T as A = E:=, and B = E&+, 2-1, there are more 

than enough sweepers to clear the tournament induced by A first and, after the 1 A1 1 Bl 

arcs between the parts are cleared, then clear the tournament induced by B. 

In particular, for acyclic digraphs, every minimum path decomposition corresponds 

to a set of paths that contain all vertices in L(D),  so wd(L(D)) 2 m(D).  

Theorem 4.17 If DlJD2, . . ., Dk are the strong components of D for some k > 1 

and S ( D )  has a path decomposition of size m = m(S(D))  into paths PI ,  P2, . . ., PmJ 

then swl,l (D) 5 EL1 ~ ( f ' i ) .  

Theorem 4.18 If T is a strong tournament of order n and has a maximum transitive 

subtournament TTk of order k, then S W , , ~ ( T )  2 n - k + 1. 

PROOF. Place a sweeper on each of the vertices not in the TTk. Use one extra 

sweeper to clear the arcs on the induced subtournament of order n - k. Next use 

this sweeper to clear arcs from the TnPk to the TTk (using the fact that T is strong). 

Finally, this extra sweeper can clear the vertices of the TTk in order of non-increasing 

scores. 

The order k(n) of a maximum transitive subtournament in a strong tournament 

of order n has been well studied (dating back to Stearns [I91 and Erdos and Maser 

[8]). Exact values are known only for values of n 2 31. In general, for 32 5 n 5 54 

it is known that k(n) satisfies log, (F) 2 k(n) 2 210g, n + 1, and for n 2 55 it is 

known that log, ( 3 )  + 7 5 k(n) 2 210g2 n + 1. Thus we have a bound on swl,,(T) 

that  is better than n - c for some constant c. 

Corollary 4.19 If T is a strong tournament or order n, then sw,,, (T) 5 n-log, n+ 1. 
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In contrast to  Corollary 4.19, from Theorem 4.2 we know that sw1,, (T) 2 6- (T)+l .  

Tournaments exist for which this is large and realizable. For example, consider the 

family of regular tournaments constructed as follows. The wreath product of two 

tournaments S and T is obtained by replacing each vertex of S by a copy of T and 

if the arc vv is in S, then all arcs between the corresponding copies of T are in this 

same direction. If we repeatedly take the wreath product of the regular graph on 

three vertices T3 with itself, we obtain a regular T = TN on N = 3" vertices with all 

scores equal to y. Thus, swlYl (T) 2 F. Inductively, we may see that this number 

of sweepers is sufficient as we may place a sweeper on every vertex of one copy of the 

TE, clear all of its arcs with an extra sweeper, use this sweeper to clear all of the arcs 

out to the neighbouring Th', use this sweeper and - others on the second copy 

of T+, and finally use these sweepers on the remaining arcs. In total we have used 

3"-1 + 1 + - = sweepers. It seems likely that regular families such as this 

might be among those that need a maximum number of sweepers when we consider 

the s w ~ , ~ ( T )  problem but we have not resolved this at this time. In this example the 

largest transitive subtournament has order about 2" so that Theorem 4.18 is not a 

good fit. 

Figure 4.3: An infinite family of tournaments showing Theorem 4.2 can be tight. 

Another family of regular tournaments for which there exists a transitive subtour- 

nament of order 9 may be constructed as  follows: Let n = 2t + 1 and have vertices 
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0,1,. . ., 2t. Let 0 dominate 1,2,. . ., t ;  1 dominate 2,3, . . ., t $1; 2 dominate 3, 4, . . ., 
t + 2, etc., where we work modulo n. This gives a t-regular tournament with a TTk 

of order giving a tight fit to Theorem 4.2. 

Figure 4.4: An infinite family of tournaments showing Corollary 4.19 can be tight. 

Theorem 4.20 If D is a strong digraph and has a minimum feedback vertex set F 

of size n - k,  then swltl(D) 5 n - k + 1. 

PROOF. Place a sweeper on each of the vertices in F. Use one extra sweeper 

to clear the arcs on the F-induced directed graph. Use this sweeper to clear arcs 

from F to  the remaining vertices (using the fact that D is strong). Finally, this extra 

sweeper can clear the vertices of the acyclic subgraph by sweeping in order of the 

acyclic ordering. 1 

Naturally, F may be quite small in comparison to n. For example, if D is an 

n-cycle we have n - k = 1, but since D may in fact be a tournament we cannot say 

more than Theorem 4.18 without adding much more knowledge of D. 

We recall that the reversibility index in(T) of a strong tournament T is the size 

of a minimum set of arcs whose reversal changes T into a reducible tournament. 

The tournament discussed after Corollary 4.15, which was almost transitive except 

for the existence of one special arc, is an example of a tournament with iR(T) = 1. 

For a particular strong tournament TI we will let R(T) be a minimal set of vertices 

whose removal leaves a reducible subtournament T' with, say, strong decomposition 

TI, T2,. . ., Tm for some m > 1. We will call this the reducibility vertex set. The set of 

initial vertices of some in(T)  arcs whose reversal changes T from being strong is an 
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example of such a reducibility set. We extend the notion seen above in the example 

with iR(T) = 1 as follows. 

Theorem 4.21 IfT is a strong tournament, R is a minimum sized reducibility vertex 

set for T ,  and the strong decomposition of T' is Tl ,T2,. . . , Tm for some m > 1, then 

swl,l(T) I IRI + maxj swl,l(T,) . 

PROOF. Place a sweeper on each vertex of R and use an extra sweeper to clear 

R. Use this sweeper to clear arcs from R to  TI. Now maxj (Tj) sweepers are 

sufficient to clear the rest of the tournament since T being strong implies that all arcs 

between successive T,'s can be cleared (sequentially) by a single sweeper once the first 

of these has been cleared. H 

An interesting question becomes, given a strong tournament T ,  what can we say 

about a minimum sized reducibility vertex set? 

We may mirror the above for directed graphs. Analogously, we let R be a set of 

vertices whose removal leaves a graph D' with S(D1) having strong decomposition 

D l  ,D2, . . ., Dm for some m > 1, (a  weakening vertex set for D) .  

Theorem 4.22 If D is a strong digraph, R is a minimum sized weakening vertex set, 

and D' has strong decomposition D1,D2, . . ., Dm for some m > 1, then swl,l(D) = 

IRI + m u j  swl,l (Dj). 

PROOF. Place a sweeper on each vertex of R. Use an extra sweeper to clear R, 

and then to  clear arcs from R to Dl. Now m u j  S W ~ , ~ ( D ~ )  are sufficient to  clear the 

rest of the digraph since D being strongly connected implies that all arcs between Di's 

can be cleared by a single sweeper - we clear using the acyclic ordering of S(D1). . 
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Further direct ions 

There are still an incredible number of open problems in-graph sweeping. While 

we have answered one of the open problms in [4], another remains. We know that 

all the inequalities in Lemma 1.3 can be strict, and in fact the differences can be 

arbitrarily large. But what of the ratios? Barriere et al. proved that for any tree T, 

mksw(T) < 2sw(T) - 2. Similarly, it seems that the ratio of monotonic connected 

sweep number to sweep number will be less than 2 in the special case of graphs where 

are cycles are disjoint. Whether the ratio of monotonic connected sweep number to 

sweep number will always be less than 2 remains open. 

Now that we know each of the inequalities in Lemma 1.3 can be strict, another 

problem becomes to find the graph(s) of least order that exhibit these properties. 

Certainly, the graphs X, Y, and W can be scaled down, but even then they may 

not be the graphs of least order. Similarly, the Y-square is the currently known least 

order graph with sweep number strictly less than monotonic sweep number (and is 

smaller than the previously known example), but it may not be the smallest possible. 

Several things must be true of the graph of least order with sweep number strictly less 

than monotonic sweep number. For example, the graph must have sweep number of 

at least 3 (and hence monotonic sweep number of a t  least 4) and it cannot be a tree. 

A related problem is classification of sweep number-critical graph - that is, find- 

ing those graphs where the removal of any single edge reduces the sweep number. 

Certainly, such graphs exist. The complete graph on n vertices is a critical graph, as 
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removing any edge lowers the sweep number. Similarly, the n-cycle is a critical graph, 

and the literature contains an infinite family of trees that is also critical. 

We know that if H is a minor of a graph G, then sw(H) 2 sw(G). As was shown 

with the graphs X ,  XI, Y,  and Y', the same does not hold for either of the monotonic 

or connected sweep numbers. But, now that we know the monotonic connected sweep 

number can be strictly greater than the connected sweep number, we may pose the 

same question: If H is a minor of G, then is mksw(H) mksw(G)? 

As to digraphs, there is a great deal to be done to parallel the directions already 

taken with graphs. A characterization of 1-sweepable digraphs was presented here, 

but for graphs, characterizations are known for 1-,2-, and 3-sweepable. However, from 

preliminary work, even 2-sweepable looks difficult for digraphs. 

As well, the ideas of monotonicity and connectedness also complicate the idea of 

sweeping directed graphs. For large n, the transitive tournament has directed sweep 

number - $, and in fact the monotonic sweep number is the same. However, the 

almost transitive tournament on the same number of vertices has directed sweep num- 

ber 2, but no monotonic sweep strategy exists for two sweepers. As well, introducing 

the "wormhole jump" into directed sweeping will also complicate matters. The di- 

rected wormhole sweep number of any acyclic graph is 1, but is generally much higher 

without allowing this type of move. 
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