32 research outputs found

    Photophysics of multicomponent molecules under dynamic control

    Get PDF
    PhD ThesisThis work focusses on seeking to gain a deep understanding of the photophysical processes inherent to multi-functional and/or multi-component supermolecules in the condensed phase. To do this, a variety of molecular systems have been subjected to spectroscopic examination, most commonly using steady-state and time-resolved emission spectroscopy to interrogate the samples. A common feature of all the molecular architectures examined herein relates to the possibility for structural motion on timescales of concern to the photophysical event. Furthermore, to provide a spectroscopic signature, most of the target dynamic systems comprise a donor covalently attached to a complementary acceptor. These systems possess the potential to be used as solar-energy concentrators or for specific sensing applications. However, attention is given only to the fundamental properties. Chapter 1 provides a general introduction to the field of molecular rotors and to the concepts of energy and electron transfer in molecular systems. Key literature examples are used to illustrate the current state-of-the-art and to set the tone for later discussions. Each chapter includes a brief introduction to the specific topic under discussion while avoiding the generic details covered in the main introduction. The essential experimental details and underlying analytical protocols for all the studies described are provided in the final chapter. Chapter 2 describes a new series of molecular rotors based on the boron dipyrromethene (BODIPY) structure. This series includes structurally-similar compounds that exhibit surprisingly disparate behaviours as putative probes for solvent viscosity. In fact, the results tend to challenge the conventional understanding of BODIPY-based molecular probes. In this chapter, we highlight the importance of asymmetry, question how it might be used to one’s advantage in the design of next generation probes, and raise ideas about porosity of the excited-state potential energy surface

    Recent advances in highly-efficient near infrared OLED emitters

    Get PDF
    Near infrared (NIR) light (700–1400 nm) can be used in numerous biological/medical as well as technological applications. In this work we review the most recent examples of highly efficient NIR organic light-emitting diode (OLED) emitters among the most relevant types of luminophores: platinum(II), iridium(III), and osmium(II) complexes, unimolecular thermally activated delayed fluorescence (TADF) emitters and exciplexes, fluorescent dyes, and the emerging group of stable luminescent radicals. We dive into the structural design principles of emitters with improved NIR efficiency. In our discussion we consider unimolecular emission as well as that arising from aggregated luminophores, as the latter often leads to a longer wavelength NIR. Our analysis of numerous emitters from various groups concludes, without a doubt, that platinum(II) complexes present superior efficiency in nearly all wavelengths from 700 to 1000 nm. We report on an apparent NIR boundary line, which appears to be a current limitation for NIR OLED efficiency. Presently, virtually only platinum(II) complexes exceed the efficiency limit set out by this boundary. So far efficient OLEDs, i.e. >1% external quantum efficiency, emitting significantly beyond 1000 nm have not yet been reported

    Are the Rates of Dexter Transfer in TADF Hyperfluorescence Systems Optically Accessible?

    Get PDF
    Seemingly not, but for unexpected reasons. Combining the triplet harvesting properties of TADF materials with the fast emission rates and colour purity of fluorescent emitters is attractive for developing high performance OLEDs. In this “hyperfluorescence” approach, triplet excitons are converted to singlets on the TADF material and transferred to the fluorescent material by long range Förster energy transfer. The primary loss mechanism is assumed to be Dexter energy transfer from the TADF triplet to the non-emissive triplet of the fluorescent emitter. Here we use optical spectroscopy to investigate energy transfer in representative emissive layers. Despite observing kinetics that at first appear consistent with Dexter quenching of the TADF triplet state, transient absorption, photoluminescence quantum yields, and comparison to phosphor-sensitised “hyperphosphorescent” systems reveal that this is not the case. While Dexter quenching by the fluorescent emitter is likely still a key loss mechanism in devices, we demonstrate that – despite initial appearances - it is inoperative under optical excitation. These results reveal a deep limitation of optical spectroscopy in characterizing hyperfluorescent systems

    Electrochemical and Spectroelectrochemical Comparative Study of Macrocyclic Thermally Activated Delayed Fluorescent Compounds: Molecular Charge Stability vs OLED EQE Roll-Off

    Full text link
    In this work, we present how a small change in molecular structure can affect the electrochemical stability of organic compounds. A new electron donor-acceptor-donor-acceptor (D-A-D-A) macrocyclic π-conjugated compound (tBuMC) comprising of dibenzophenazine as As and N,N’-bis(t-butylphenyl)-p-phenylenediamines as Ds has been synthesized. The photophysical investigation uncovered that tBuMC showed thermally activated delayed fluorescence and that the organic light-emitting diodes (OLEDs) fabricated with tBuMC as the emitter achieved high external quantum efficiency (EQEs) of ca. 10%. However, the OLED with tBuMC showed a slightly lower EQE than that of the OLED with MC (11.6%) and showed greater EQE roll-off. Comparative studies on electrochemical properties of tBuMC, MC, and a linear analogue (Linear) revealed the introduction of t-Bu groups in the D-A-D-A scaffold causes a significant change in redox behavior. Full electrochemical and spectroelectrochemical studies gave clues to understand how the steric hindering group is affecting the charge distribution in the new molecules which results in a significant difference in the OLED roll-off. The electrochemical investigations together with UV-Vis-NIR and EPR analyses supported by quantum chemical theoretical calculations were performed, which provided us insights on the effect of structural modification on the redox properties of the D-A-D-A scaffold.This is the peer reviewed version of the following article: A. Nyga, S. Izumi, H. F. Higginbotham, P. Stachelek, S. Pluczyk, P. de Silva, S. Minakata, Y. Takeda, P. Data, Asian J. Org. Chem. 2020, 9, 2153., which has been published in final form at https://doi.org/10.1002/ajoc.202000475. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving

    Electronic Communication in Closely Connected BODIPY-Based Bichromophores

    No full text
    A small series of closely spaced, bichromophoric boron dipyrromethene (BODIPY) derivatives has been examined by optical spectroscopy and compared to the corresponding mononuclear dyes. The compounds vary according to the site of attachment and also by the nature of alkyl or aryl substituents incorporated into the dipyrrin backbone. Excitonic coupling splits the lowest-energy absorption transition in each case, but to highly variable degrees. There are also marked changes in the fluorescence quantum yields across the series but much less variation in the excited-state lifetimes. After comparing different models, it is concluded that the ideal dipole approximation gives a crude qualitative representation of the observed splitting of the absorption transition, but the extended dipole approach is not applicable to these systems. Agreement is substantially improved by employing a model that takes into account the dihedral angle between the planes of the two dipyrrin units. The large variation in radiative rate constants, and those for the accompanying nonradiative processes, is accountable in terms of electronic coupling and/or intensity borrowing between the two excitonic states. In all cases, the dihedral angle between the two BODIPY units plays a key role

    Circularly polarised luminescence laser scanning confocal microscopy to study live cell chiral molecular interactions

    Get PDF
    The molecular machinery of life is founded on chiral building blocks, but no experimental technique is currently available to distinguish or monitor chiral systems in live cell bio-imaging studies. Luminescent chiral molecules encode a unique optical fingerprint within emitted circularly polarized light (CPL) carrying information about the molecular environment, conformation, and binding state. Here, we present a CPL Laser Scanning Confocal Microscope (CPL-LSCM) capable of simultaneous chiroptical contrast based live-cell imaging of endogenous and engineered CPL-active cellular probes. Further, we demonstrate that CPL-active probes can be activated using two-photon excitation, with complete CPL spectrum recovery. The combination of these two milestone results empowers the multidisciplinary imaging community, allowing the study of chiral interactions on a sub-cellular level in a new (chiral) light

    Stepwise photoconversion of an artificial light-harvesting array built from extended BODIPY units

    No full text
    A molecular dyad, comprising two disparate extended boron dipyrromethene (BODIPY) units, has been identified as a potential component of artificial light-harvesting arrays. Highly efficient, intramolecular electronic energy transfer takes place under illumination but there is some competition from light-induced electron transfer along the molecular axis. The primary energy acceptor has a somewhat shortened excited-state lifetime and reduced emission quantum yield due to charge transfer from a terminal amine residue, the latter being required for the molecular system to operate in organic solar cells. Under continuous illumination with simulated solar light, the dyad undergoes very slow decomposition. In a protic solvent, both BODIPY units degrade at the same rate via an autocatalytic process. The products, one of which is a protonated analogue of the donor, degrade further by independent routes. In aprotic solvents or thin plastic films, the acceptor BODIPY dye absorbing at lowest energy undergoes photochemical degradation as above but the donor is much more stable under these conditions. At each stage of degradation, the molecule retains the ability to sensitize an amorphous silicon solar cell and the overall turnover number with respect to absorbed photons exceeds 10 million. The optical properties of the target compound nicely complement those of the solar cell and sensitization helps to avoid Staebler–Wronski photo-degradation

    A bifurcated molecular pentad capable of sequential electronic energy transfer and intramolecular charge transfer

    No full text
    An extended molecular array, comprising three distinct types of chromophores and two additional redox-active subunits, that harvests photons over most of the visible spectral range has been synthesized and characterised. The array exhibits a rich variety of electrochemical waves when examined by cyclic voltammetry but assignment can be made on the basis of control compounds and molecular orbital calculations. Stepwise electronic energy transfer occurs along the molecular axis, corresponding to a gradient of excitation energies, to populate the lowest-energy excited state of the ultimate acceptor. The latter species, which absorbs and emits in the far-red region, enters into light-induced charge transfer with a terminal amine group. The array is relatively stable under illumination with white light but degrades slowly via a series of well-defined steps, the first of which is autocatalytic. One of the main attributes of this system is the capability to harvest an unusually high fraction of sunlight while providing protection against exposure to UV light

    Exciplex Emission from a Boron Dipyrromethene (Bodipy) Dye Equipped with a Dicyanovinyl Appendage

    No full text
    The photophysical properties of a prototypic donor–acceptor dyad, featuring a conventional boron dipyrromethene (Bodipy) dye linked to a dicyanovinyl unit through a meso-phenylene ring, have been recorded in weakly polar solvents. The absorption spectrum remains unperturbed relative to that of the parent Bodipy dye but the fluorescence is extensively quenched. At room temperature, the emission spectrum comprises roughly equal contributions from the regular π, π* excited-singlet state and from an exciplex formed by partial charge transfer from Bodipy to the dicyanovinyl residue. This mixture moves progressively in favor of the locally excited π, π* state on cooling and the exciplex is no longer seen in frozen media; the overall emission quantum yield changes dramatically near the freezing point of the solvent. The exciplex, which has a lifetime of approximately 1 ns at room temperature, can also be seen by transient absorption spectroscopy, in which it decays to form the locally excited triplet state. Under applied pressure (P<170 MPa), formation of the exciplex is somewhat hindered by restricted rotation around the semirigid linkage and again the emission profile shifts in favor of the π, π* excited state. At higher pressure (170<P<550 MPa), the molecule undergoes reversible distortion that has a small effect on the yield of π, π* emission but severely quenches exciplex fluorescence. In the limiting case, this high-pressure effect decreases the molar volume of the solute by approximately 25 cm3 and opens a new channel for nonradiative deactivation of the excited-state manifold

    Fluorescent molecular rotors based on the BODIPY motif: effect of remote substituents

    No full text
    The ability of an unconstrained boron dipyrromethene dye to report on changes in local viscosity is improved by appending a single aryl ring at the lower rim of the dipyrrin core. Recovering the symmetry by attaching an identical aryl ring on the opposite side of the lower rim greatly diminishes the sensory activity, as does blocking rotation of the meso-aryl group. On the basis of viscosity- and temperature-dependence studies, together with quantum chemical calculations, it is proposed that a single aryl ring at the 3-position extends the molecular surface area that undergoes structural distortion during internal rotation. The substitution pattern at the lower rim also affects the harmonic frequencies at the bottom of the potential well and at the top of the barrier. These effects can be correlated with the separation of the H1,H7 hydrogen atoms
    corecore