8 research outputs found

    Lambda(1520) production in d+Au collisions at RHIC

    Full text link
    Recent results of Λ\Lambda(1520) resonance production in d+Au collisions at sNN=\sqrt{s_{\rm NN}} = 200 GeV are presented and discussed in terms of the evolution and freeze-out conditions of a hot and dense fireball medium. Yields and spectra are compared to results from p+p and Au+Au collisions. The Λ\Lambda(1520)/Λ\Lambda ratio in d+Au collisions ratio is consistent with the ratio in p+p collisions. This suggests a short time for elastic interactions between chemical and thermal freeze-out. One can conclude that the interaction volume in d+Au collisions is small.Comment: 4 Pages, 3 figures, conference proceedings Quark Matter 200

    Hadron production in Au-Au collisions at RHIC

    Get PDF
    We present an analysis of particle production yields measured in central Au-Au collisions at RHIC in the framework of the statistical thermal model. We demonstrate that the model extrapolated from previous analyses at SPS and AGS energy is in good agreement with the available experimental data at s=130\sqrt s=130 GeV implying a high degree of chemical equilibration. Performing a χ2\chi^2 fit to the data, the range of thermal parameters at chemical freezeout is determined. At present, the best agreement of the model and the data is obtained with the baryon chemical potential μB46±5\mu_B\simeq 46\pm 5 MeV and temperature T174±7T\simeq 174\pm 7 MeV. More ratios, such as multistrange baryon to meson, would be required to further constrain the chemical freezeout conditions. Extrapolating thermal parameters to higher energy, the predictions of the model for particle production in Au-Au reactions at s=200\sqrt s=200 GeV are also given.Comment: Final version, minor changes to text and figures. To appear in Phys. Lett.

    Particle Ratios, Equilibration, and the QCD Phase Boundary

    Get PDF
    We discuss the status of thermal model descriptions of particle ratios in central nucleus-nucleus collisions at ultra-relativistic energy. An alternative to the ``Cleymans-Redlich'' interpretation of the freeze-out trajectory is given in terms of the total baryon density. Emphasis is placed on the relation between the chemical equilibration parameters and the QCD phase boundary. Furthermore, we trace the essential difference between thermal model analyses of data from collisions between elementary particles and from heavy ion collisions as due to a transition from local strangeness conservation to percolation of strangeness over large volumes, as occurs naturally in a deconfined medium. We also discuss predictions of the thermal model for composite particle production.Comment: Contribution to SQM2001 Conference, submitted to J. Phys.

    Resonance Production

    Full text link
    Recent results on rho(770)^0, K(892)^*0, f_0(980), phi(1020), Delta(1232)^++, and Lambda(1520) production in A+A and p+p collisions at SPS and RHIC energies are presented. These resonances are measured via their hadronic decay channels and used as a sensitive tool to examine the collision dynamics in the hadronic medium through their decay and regeneration. The modification of resonance mass, width, and shape due to phase space and dynamical effects are discussed.Comment: 8 pages, 10 figures, proceedings of the Quark Matter 2004, in Oakland, California, to be published in Journal of Physics G: Nuclear and Particle Physic

    What do we learn from Resonance Production in Heavy Ion Collisions?

    Full text link
    Resonances with their short life time and strong coupling to the dense and hot medium are suggested as a signature of the early stage of the fireball created in a heavy ion collision \cite{rap00,lut01,lut02}. The comparison of resonances with different lifetimes and quark contents may give information about time evolution and density and temperature of during the expanding of fireball medium. Resonances in elementary reactions have been measured since 1960. Resonance production in elementary collisions compared with heavy ion collisions where we expect to create a hot and dense medium may show the direct of influence of the medium on the resonances. This paper shows a selection of the recent resonance measurements from SPS and RHIC heavy ion colliders.Comment: 10 pages, 8 figures, HotQuarks 2004 conference proceeding

    Resonance production in heavy ion collisions

    Full text link
    Recent results of resonance production from RHIC at sNN=\sqrt{s_{\rm NN}} = 200 GeV and SPS at sNN=\sqrt{s_{\rm NN}} = 17 GeV are presented and discussed in terms of the evolution and freeze-out conditions of a hot and dense fireball medium. Yields and spectra are compared with thermal model predictions at chemical freeze-out. Deviations in the low transverse momentum region of the resonance spectrum of the hadronic decay channel, suggest a strongly interaction hadronic phase between chemical and kinetic freeze-out. Microscopic models including resonance rescattering and regeneration are able to describe the trend of the data. The magnitude of the regeneration cross sections for different inverse decay channels are discussed. Model calculations which include elastic hadronic interactions between chemical freeze-out and thermal freeze-out based on the K(892)/K and Λ\Lambda(1520)/Λ\Lambda ratios suggest a time between two freeze-outs surfaces of Δτ>\Delta \tau> 4 fm/c. The difference in momentum distributions and yields for the ϕ\phi(1020) resonance reconstructed from the leptonic and hadronic decay channels at SPS energy are discussed taking into account the impact of a hadronic phase and possible medium modifications.Comment: 8 pages, 4 figures, conference proceedings (SQM2004

    Hadron production in Au-Au collisions at RHIC

    No full text
    We present an analysis of particle production yields measured in central Au-Au collisions at RHIC in the framework of the statistical thermal model. We demonstrate that the model extrapolated from previous analyses at SPS and AGS energy is in good agreement with the available experimental data at #sq root#(s) = 130 GeV implying a high degree of chemical equilibration. Performing a #chi#"2 fit to the data, the range of thermal parameters at chemical freezeout is determined. At present, the best agreement of the model and the data is obtained with the baryon chemical potential #mu#_B #approx =# 51 #+-# 6 MeV and temperature T #approx =# 175 #+-# 7 MeV. More ratios, such as multistrange baryon to meson, would be required to further constrain the chemical freezeout conditions. Extrapolating thermal parameters to higher energy, the predictions of the model for particle production in Au-Au reactions at #sq root#(s) = 200 GeV are also given. (orig.)Available from TIB Hannover / FIZ - Fachinformationszzentrum Karlsruhe / TIB - Technische InformationsbibliothekSIGLEDEGerman
    corecore